Actions of quantum groups on operator systems

Joeri De Ro

Joint work with Lucas Hataishi

Main goal: Introduce notions of actions of compact and discrete quantum groups on operator systems, and study equivariant injectivity of crossed products.

Main goal: Introduce notions of actions of compact and discrete quantum groups on operator systems, and study equivariant injectivity of crossed products.

Main goal: Introduce notions of actions of compact and discrete quantum groups on operator systems, and study equivariant injectivity of crossed products.

Content presentation:

1. Operator systems and tensor products

Main goal: Introduce notions of actions of compact and discrete quantum groups on operator systems, and study equivariant injectivity of crossed products.

- 1. Operator systems and tensor products
- 2. The classical picture

Main goal: Introduce notions of actions of compact and discrete quantum groups on operator systems, and study equivariant injectivity of crossed products.

- 1. Operator systems and tensor products
- 2. The classical picture
- 3. Quantum groups

Main goal: Introduce notions of actions of compact and discrete quantum groups on operator systems, and study equivariant injectivity of crossed products.

- 1. Operator systems and tensor products
- 2. The classical picture
- 3. Quantum groups
- 4. Actions of quantum groups

Main goal: Introduce notions of actions of compact and discrete quantum groups on operator systems, and study equivariant injectivity of crossed products.

- 1. Operator systems and tensor products
- 2. The classical picture
- 3. Quantum groups
- 4. Actions of quantum groups
- 5. Injectivity of crossed products

Operator system

An operator system X is a norm-closed, self-adjoint subspace of a unital C^* -algebra A such that $1_A \in X$.

Operator system

An operator system X is a norm-closed, self-adjoint subspace of a unital C^* -algebra A such that $1_A \in X$.

Tensor products of operator systems

Let $X \subseteq B(\mathcal{H})$, $Y \subseteq B(\mathcal{K})$ be operator systems.

Operator system

An operator system X is a norm-closed, self-adjoint subspace of a unital C^* -algebra A such that $1_A \in X$.

Tensor products of operator systems

Let $X \subseteq B(\mathcal{H})$, $Y \subseteq B(\mathcal{K})$ be operator systems.

We define

$$X \otimes Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq B(\mathcal{H} \otimes \mathcal{K})$$

and call it the minimal tensor product of operator systems.

Operator system

An operator system X is a norm-closed, self-adjoint subspace of a unital C^* -algebra A such that $1_A \in X$.

Tensor products of operator systems

Let $X \subseteq B(\mathcal{H})$, $Y \subseteq B(\mathcal{K})$ be operator systems.

We define

$$X \otimes Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq B(\mathcal{H} \otimes \mathcal{K})$$

and call it the minimal tensor product of operator systems.

• We define the Fubini tensor product $X \otimes Y$ to be the set of all $z \in B(\mathcal{H} \otimes \mathcal{K})$ such that $(\omega \otimes \mathrm{id})(z) \in Y$ for all $\omega \in B(\mathcal{H})_*$ and $(\mathrm{id} \otimes \chi)(z) \in X$ for all $\chi \in B(\mathcal{K})_*$.

► Fix a discrete group Γ, a C^* -algebra A and a group action $\beta: \Gamma \to \operatorname{Aut}(A)$.

Fix a discrete group Γ, a C^* -algebra A and a group action β : Γ → Aut(A).

Fubini crossed product (Hamana, 1980)

The set

$$A \rtimes_{\alpha,\mathcal{F}} \Gamma := \{ z \in A \overline{\otimes} B(\ell^2(\Gamma)) : \forall g,h,k \in \Gamma : \beta_{g^{-1}}(z_{h,k}) = z_{hg,kg} \}$$

is called the Fubini crossed product.

Injectivity of Fubini crossed product (Hamana, 1981)

The following statements are equivalent:

- A is Γ-injective.
- ▶ $A \rtimes_{\alpha,\mathcal{F}} \Gamma$ is injective.

Injectivity of Fubini crossed product (Hamana, 1981)

The following statements are equivalent:

- A is Γ-injective.
- $A \rtimes_{\alpha,\mathcal{F}} \Gamma$ is injective.
- ▶ Taking $A = \mathbb{C}$, we find that the following statements are equivalent:
 - Γ is amenable.
 - ightharpoonup L(Γ), the left group von Neumann algebra, is injective.

Injectivity of Fubini crossed product (Hamana, 1981)

The following statements are equivalent:

- A is Γ-injective.
- ▶ $A \bowtie_{\alpha,\mathcal{F}} \Gamma$ is injective.
- ▶ Taking $A = \mathbb{C}$, we find that the following statements are equivalent:
 - Γ is amenable.
 - ightharpoonup L(Γ), the left group von Neumann algebra, is injective.
- Goal: Find suitable generalisation when the discrete group Γ is replaced by a discrete quantum group.

▶ Let \mathbb{G} be a CQG (in the sense of Woronowicz) with function algebra $(C(\mathbb{G}), \Delta_{\mathbb{G}})$ and Haar state $\varphi_{\mathbb{G}} : C(\mathbb{G}) \to \mathbb{C}$ with GNS-construction $(L^2(\mathbb{G}), \lambda, \xi_{\mathbb{G}})$.

- Let \mathbb{G} be a CQG (in the sense of Woronowicz) with function algebra $(C(\mathbb{G}), \Delta_{\mathbb{G}})$ and Haar state $\varphi_{\mathbb{G}} : C(\mathbb{G}) \to \mathbb{C}$ with GNS-construction $(L^2(\mathbb{G}), \lambda, \xi_{\mathbb{G}})$.
- ▶ Let $\mathcal{O}(\mathbb{G})$ be the dense Hopf *-subalgebra of $C(\mathbb{G})$.

- Let \mathbb{G} be a CQG (in the sense of Woronowicz) with function algebra $(C(\mathbb{G}), \Delta_{\mathbb{G}})$ and Haar state $\varphi_{\mathbb{G}} : C(\mathbb{G}) \to \mathbb{C}$ with GNS-construction $(L^2(\mathbb{G}), \lambda, \xi_{\mathbb{G}})$.
- ▶ Let $\mathcal{O}(\mathbb{G})$ be the dense Hopf *-subalgebra of $C(\mathbb{G})$.
- lacktriangle Consider the multiplicative unitaries $V_{\mathbb G}$ and $W_{\mathbb G}$ given by

$$V_{\mathbb{G}}(\Lambda(a) \otimes \Lambda(b)) = (\Lambda \odot \Lambda)(\Delta(a)(1 \otimes b)),$$

$$W_{\mathbb{G}}^{*}(\Lambda(a) \otimes \Lambda(b)) = (\Lambda \odot \Lambda)(\Delta(b)(a \otimes 1)).$$

- Let \mathbb{G} be a CQG (in the sense of Woronowicz) with function algebra $(C(\mathbb{G}), \Delta_{\mathbb{G}})$ and Haar state $\varphi_{\mathbb{G}} : C(\mathbb{G}) \to \mathbb{C}$ with GNS-construction $(L^2(\mathbb{G}), \lambda, \xi_{\mathbb{G}})$.
- ▶ Let $\mathcal{O}(\mathbb{G})$ be the dense Hopf *-subalgebra of $C(\mathbb{G})$.
- lacktriangle Consider the multiplicative unitaries $V_{\mathbb G}$ and $W_{\mathbb G}$ given by

$$V_{\mathbb{G}}(\Lambda(a) \otimes \Lambda(b)) = (\Lambda \odot \Lambda)(\Delta(a)(1 \otimes b)),$$

$$W_{\mathbb{G}}^{*}(\Lambda(a) \otimes \Lambda(b)) = (\Lambda \odot \Lambda)(\Delta(b)(a \otimes 1)).$$

▶ We define $C_r(\mathbb{G}) = \lambda(C(\mathbb{G}))$ and $\mathscr{L}^{\infty}(\mathbb{G}) := C_r(\mathbb{G})''$ and we endow them with their usual coproduct

$$\Delta(x) = V_{\mathbb{G}}(x \otimes 1)V_{\mathbb{G}}^*, \quad x \in B(L^2(\mathbb{G})).$$

• Consider the multiplier Hopf *-algebra $(c_c(\widehat{\mathbb{G}}), \widetilde{\Delta})$ dual to $(\mathcal{O}(\mathbb{G}), \Delta)$, i.e.

$$c_c(\widehat{\mathbb{G}}) = \{\varphi_{\mathbb{G}}(-a) : a \in \mathcal{O}(\mathbb{G})\}, \quad \widetilde{\Delta}(\omega)(a \otimes b) = \omega(ab).$$

• Consider the multiplier Hopf *-algebra $(c_c(\widehat{\mathbb{G}}), \widetilde{\Delta})$ dual to $(\mathcal{O}(\mathbb{G}), \Delta)$, i.e.

$$c_{c}(\widehat{\mathbb{G}}) = \{\varphi_{\mathbb{G}}(-a) : a \in \mathcal{O}(\mathbb{G})\}, \quad \widetilde{\Delta}(\omega)(a \otimes b) = \omega(ab).$$

▶ Define dual GNS-maps $\hat{\Gamma}, \hat{\Lambda} : c_c(\widehat{\mathbb{G}}) \to B(L^2(\mathbb{G}))$ by

$$\hat{\Gamma}(\varphi_{\mathbb{G}}(-a)) = \Lambda(a), \quad \hat{\Lambda}(\omega) = \hat{\Gamma}(\omega \star \delta^{-1/2}).$$

• Consider the multiplier Hopf *-algebra $(c_c(\widehat{\mathbb{G}}), \widetilde{\Delta})$ dual to $(\mathcal{O}(\mathbb{G}), \Delta)$, i.e.

$$c_c(\widehat{\mathbb{G}}) = \{\varphi_{\mathbb{G}}(-a) : a \in \mathcal{O}(\mathbb{G})\}, \quad \widetilde{\Delta}(\omega)(a \otimes b) = \omega(ab).$$

▶ Define dual GNS-maps $\widehat{\Gamma}$, $\widehat{\Lambda}$: $c_c(\widehat{\mathbb{G}}) \to B(L^2(\mathbb{G}))$ by

$$\hat{\Gamma}(\varphi_{\mathbb{G}}(-a)) = \Lambda(a), \quad \hat{\Lambda}(\omega) = \hat{\Gamma}(\omega \star \delta^{-1/2}).$$

▶ With respect to these GNS-maps, we can define the multiplicative unitaries $V_{\widehat{\mathbb{G}}}$, $W_{\widehat{\mathbb{G}}} \in B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G}))$.

7

• Consider the multiplier Hopf *-algebra $(c_c(\widehat{\mathbb{G}}), \widetilde{\Delta})$ dual to $(\mathcal{O}(\mathbb{G}), \Delta)$, i.e.

$$c_c(\widehat{\mathbb{G}}) = \{\varphi_{\mathbb{G}}(-a) : a \in \mathcal{O}(\mathbb{G})\}, \quad \widetilde{\Delta}(\omega)(a \otimes b) = \omega(ab).$$

▶ Define dual GNS-maps $\widehat{\Gamma}$, $\widehat{\Lambda}$: $c_c(\widehat{\mathbb{G}}) \to B(L^2(\mathbb{G}))$ by

$$\hat{\Gamma}(\varphi_{\mathbb{G}}(-a)) = \Lambda(a), \quad \hat{\Lambda}(\omega) = \hat{\Gamma}(\omega \star \delta^{-1/2}).$$

- ▶ With respect to these GNS-maps, we can define the multiplicative unitaries $V_{\widehat{\mathbb{G}}}$, $W_{\widehat{\mathbb{G}}} \in B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G}))$.
- We also define $\hat{\lambda}: c_c(\widehat{\mathbb{G}}) \to B(L^2(\mathbb{G}))$ by $\hat{\lambda}(\omega)\hat{\Gamma}(\chi) \coloneqq \hat{\Gamma}(\omega \star \chi)$

• We define $\mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \coloneqq \hat{\lambda}(c_c(\widehat{\mathbb{G}}))''$.

- We define $\mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \coloneqq \widehat{\lambda}(c_{c}(\widehat{\mathbb{G}}))''$.
- $\mathscr{L}^{\infty}(\widehat{\mathbb{G}}) = \prod_{\pi \in \mathsf{Irr}(\mathbb{G})} B(\mathcal{H}_{\pi}).$

- We define $\mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \coloneqq \widehat{\lambda}(c_c(\widehat{\mathbb{G}}))''$.
- $\mathscr{L}^{\infty}(\widehat{\mathbb{G}}) = \prod_{\pi \in Irr(\mathbb{G})} B(\mathcal{H}_{\pi}).$
- Define the comultiplications

$$\hat{\Delta}_{I}: B(L^{2}(\mathbb{G})) \to B(L^{2}(\mathbb{G})) \overline{\otimes} B(L^{2}(\mathbb{G})) : x \mapsto W_{\widehat{\mathbb{G}}}^{*}(1 \otimes x) W_{\widehat{\mathbb{G}}}$$
$$\hat{\Delta}_{r}: B(L^{2}(\mathbb{G})) \to B(L^{2}(\mathbb{G})) \overline{\otimes} B(L^{2}(\mathbb{G})) : x \mapsto V_{\widehat{\mathbb{G}}}(x \otimes 1) V_{\widehat{\mathbb{G}}}^{*}$$

- We define $\mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \coloneqq \hat{\lambda}(c_{c}(\widehat{\mathbb{G}}))''$.
- $\mathscr{L}^{\infty}(\widehat{\mathbb{G}}) = \prod_{\pi \in Irr(\mathbb{G})} B(\mathcal{H}_{\pi}).$
- Define the comultiplications

$$\hat{\Delta}_{I}: B(L^{2}(\mathbb{G})) \to B(L^{2}(\mathbb{G})) \overline{\otimes} B(L^{2}(\mathbb{G})) : x \mapsto W_{\widehat{\mathbb{G}}}^{*}(1 \otimes x) W_{\widehat{\mathbb{G}}}$$
$$\hat{\Delta}_{r}: B(L^{2}(\mathbb{G})) \to B(L^{2}(\mathbb{G})) \overline{\otimes} B(L^{2}(\mathbb{G})) : x \mapsto V_{\widehat{\mathbb{G}}}(x \otimes 1) V_{\widehat{\mathbb{G}}}^{*}$$

▶ These comultiplications agree on $\mathscr{L}^{\infty}(\widehat{\mathbb{G}})$: $\hat{\Delta} := \hat{\Delta}_I = \hat{\Delta}_{r}$.

ACTIONS OF COMPACT QUANTUM GROUPS

G-C*-actions

A right \mathbb{G} - \mathbb{C}^* -operator system is a pair (X, α) where X is an operator system and $\alpha: X \to X \otimes \mathbb{C}_r(\mathbb{G})$ is a uci map such that:

G-C*-actions

A right \mathbb{G} - \mathbb{C}^* -operator system is a pair (X, α) where X is an operator system and $\alpha: X \to X \otimes \mathbb{C}_r(\mathbb{G})$ is a uci map such that:

▶ The coaction property is satisfied: $(\alpha \otimes id)\alpha = (id \otimes \Delta)\alpha$.

G-C*-actions

A right \mathbb{G} - \mathbb{C}^* -operator system is a pair (X, α) where X is an operator system and $\alpha: X \to X \otimes \mathbb{C}_r(\mathbb{G})$ is a uci map such that:

- ▶ The coaction property is satisfied: $(\alpha \otimes id)\alpha = (id \otimes \Delta)\alpha$.
- ► The Podleś density condition is satisfied, i.e. $[\alpha(X)(1 \otimes C_r(\mathbb{G}))] = X \otimes C_r(\mathbb{G}).$

G-C*-actions

A right \mathbb{G} - \mathbb{C}^* -operator system is a pair (X, α) where X is an operator system and $\alpha: X \to X \otimes C_r(\mathbb{G})$ is a uci map such that:

- ▶ The coaction property is satisfied: $(\alpha \otimes id)\alpha = (id \otimes \Delta)\alpha$.
- ► The Podleś density condition is satisfied, i.e. $[\alpha(X)(1 \otimes C_r(\mathbb{G}))] = X \otimes C_r(\mathbb{G}).$

We will write $X \stackrel{\alpha}{\backsim} \mathbb{G}$ and say that α defines a right \mathbb{G} - C^* -action on the operator system X.

G-C*-actions

A right \mathbb{G} - \mathbb{C}^* -operator system is a pair (X, α) where X is an operator system and $\alpha: X \to X \otimes C_r(\mathbb{G})$ is a uci map such that:

- ▶ The coaction property is satisfied: $(\alpha \otimes id)\alpha = (id \otimes \Delta)\alpha$.
- ► The Podleś density condition is satisfied, i.e. $[\alpha(X)(1 \otimes C_r(\mathbb{G}))] = X \otimes C_r(\mathbb{G}).$

We will write $X \stackrel{\alpha}{\backsim} \mathbb{G}$ and say that α defines a right \mathbb{G} - C^* -action on the operator system X.

The usual spectral decomposition works.

G-C*-actions

A right \mathbb{G} - \mathbb{C}^* -operator system is a pair (X, α) where X is an operator system and $\alpha: X \to X \otimes \mathbb{C}_r(\mathbb{G})$ is a uci map such that:

- ▶ The coaction property is satisfied: $(\alpha \otimes id)\alpha = (id \otimes \Delta)\alpha$.
- ► The Podleś density condition is satisfied, i.e. $[\alpha(X)(1 \otimes C_r(\mathbb{G}))] = X \otimes C_r(\mathbb{G}).$

We will write $X \stackrel{\alpha}{\backsim} \mathbb{G}$ and say that α defines a right \mathbb{G} - C^* -action on the operator system X.

- The usual spectral decomposition works.
- If X is a C^* -algebra, then α is automatically multiplicative!

G-W*-actions

A right \mathbb{G} - W^* -operator system is a pair (X,α) where X is an operator system and $\alpha: X \to X \otimes \mathscr{L}^\infty(\mathbb{G})$ is a uci map such that the coaction property is satisfied, i.e. $(\alpha \otimes \mathrm{id})\alpha = (\mathrm{id} \otimes \Delta)\alpha$. We will write $X \stackrel{\alpha}{\hookrightarrow} \mathbb{G}$ and say that α defines a right \mathbb{G} - W^* -action on the operator system X.

G-W*-actions

A right \mathbb{G} - W^* -operator system is a pair (X,α) where X is an operator system and $\alpha: X \to X \boxtimes \mathscr{L}^\infty(\mathbb{G})$ is a uci map such that the coaction property is satisfied, i.e. $(\alpha \boxtimes \mathrm{id})\alpha = (\mathrm{id} \boxtimes \Delta)\alpha$. We will write $X \overset{\alpha}{\bowtie} \mathbb{G}$ and say that α defines a right \mathbb{G} - W^* -action on the operator system X.

Regular elements

If (X, α) is a \mathbb{G} - W^* -operator system, we define the algebraic regular elements and the regular elements by

$$\begin{split} & \mathcal{R}_{\mathsf{alg}}(\mathbf{X}, \alpha) \coloneqq \{ \mathbf{x} \in \mathbf{X} : \alpha(\mathbf{x}) \in \mathbf{X} \odot \mathcal{O}(\mathbb{G}) \}, \\ & \mathcal{R}(\mathbf{X}, \alpha) \coloneqq \overline{\mathcal{R}_{\mathsf{alg}}(\mathbf{X}, \alpha)}^{\|\cdot\|}. \end{split}$$

 \mathbb{G} - C^* and \mathbb{G} - W^* -equivariant maps

G-C* and G-W*-equivariant maps

Let (X, α) and (Y, β) two \mathbb{G} - C^* -operator systems. A ucp map $\phi: X \to Y$ is called \mathbb{G} - C^* -equivariant if the following diagram commutes



G-**C*** and **G**-**W***-equivariant maps

▶ Let (X, α) and (Y, β) two \mathbb{G} - C^* -operator systems. A ucp map $\phi: X \to Y$ is called \mathbb{G} - C^* -equivariant if the following diagram commutes

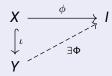
$$egin{array}{cccc} X & & & & & & Y \\ & & & & & & & \downarrow^{eta} \\ X \otimes C_r(\mathbb{G}) & & & & & & Y \otimes C_r(\mathbb{G}) \end{array}$$

Let (X, α) and (Y, β) two \mathbb{G} - W^* -operator systems. A ucp map $\phi: X \to Y$ is called \mathbb{G} - W^* -equivariant if the following diagram commutes

G-C* and G-W*-injectivity

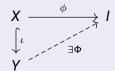
G-C* and G-W*-injectivity

▶ A \mathbb{G} - C^* -operator system I is called \mathbb{G} - C^* -injective if for all \mathbb{G} - C^* -operator systems X, Y, every \mathbb{G} - C^* -ucp map $\varphi : X \to I$ and every \mathbb{G} - C^* -uci map $\iota : X \to Y$, there exists a \mathbb{G} - C^* -ucp map $\Phi : Y \to I$ such that $\Phi_{\ell} = \phi$.



G-C* and G-W*-injectivity

A \mathbb{G} - C^* -operator system I is called \mathbb{G} - C^* -injective if for all \mathbb{G} - C^* -operator systems X, Y, every \mathbb{G} - C^* -ucp map $\varphi: X \to I$ and every \mathbb{G} - C^* -uci map $\iota: X \to Y$, there exists a \mathbb{G} - C^* -ucp map $\Phi: Y \to I$ such that $\Phi_{\ell} = \phi$.



► Similarly, G-W*-injectivity is defined.

Elementary properties

Let (\mathbf{X}, α) be a \mathbb{G} - \mathbf{W}^* -operator system.

Elementary properties

Let (X, α) be a \mathbb{G} - W^* -operator system.

▶ If X is injective as an operator system, then $(X \overline{\otimes} B(L^2(\mathbb{G})), id_X \overline{\otimes} \Delta)$ is \mathbb{G} - W^* -injective.

Elementary properties

Let (X, α) be a \mathbb{G} - W^* -operator system.

- ▶ If X is injective as an operator system, then $(X \overline{\otimes} B(L^2(\mathbb{G})), id_X \overline{\otimes} \Delta)$ is \mathbb{G} - W^* -injective.
- ▶ The following statements are equivalent:

Elementary properties

Let (X, α) be a \mathbb{G} - W^* -operator system.

- ▶ If X is injective as an operator system, then $(X \overline{\otimes} B(L^2(\mathbb{G})), id_X \overline{\otimes} \Delta)$ is \mathbb{G} - W^* -injective.
- ▶ The following statements are equivalent:
 - 1. (\mathbf{X}, α) is \mathbb{G} - \mathbf{W}^* -injective.

Elementary properties

Let (X, α) be a \mathbb{G} - W^* -operator system.

- ▶ If X is injective as an operator system, then $(X \overline{\otimes} B(L^2(\mathbb{G})), id_X \overline{\otimes} \Delta)$ is \mathbb{G} - W^* -injective.
- ▶ The following statements are equivalent:
 - 1. (X, α) is \mathbb{G} - W^* -injective.
 - 2. X is injective and there exists a \mathbb{G} - W^* ucp conditional expectation $\varphi: (X \overline{\otimes} B(L^2(\mathbb{G})), \operatorname{id} \overline{\otimes} \Delta) \to (\alpha(X), \operatorname{id} \overline{\otimes} \Delta)$.

G-actions

A (right) $\widehat{\mathbb{G}}$ -operator system is a pair (X,α) where X is an operator system and $\alpha: X \to X \overline{\otimes} \mathscr{L}^{\infty}(\widehat{\mathbb{G}})$ is a uci map such that $(\alpha \overline{\otimes} \operatorname{id})\alpha = (\operatorname{id} \overline{\otimes} \widehat{\Delta})\alpha$. We will write $X \stackrel{\alpha}{\bowtie} \widehat{\mathbb{G}}$ and say that α defines a right $\widehat{\mathbb{G}}$ -action on the operator system X.

G-actions

A (right) $\widehat{\mathbb{G}}$ -operator system is a pair (X,α) where X is an operator system and $\alpha: X \to X \overline{\otimes} \mathscr{L}^{\infty}(\widehat{\mathbb{G}})$ is a uci map such that $(\alpha \overline{\otimes} \operatorname{id})\alpha = (\operatorname{id} \overline{\otimes} \widehat{\Delta})\alpha$. We will write $X \stackrel{\alpha}{\bowtie} \widehat{\mathbb{G}}$ and say that α defines a right $\widehat{\mathbb{G}}$ -action on the operator system X.

▶ If X is a C^* -algebra, then $X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \cong \prod_{\pi \in Irr(\mathbb{G})} (X \otimes B(\mathcal{H}_{\pi}))$ carries a natural C^* -algebra structure. Then α is a *-homomorphism (result by S. Vaes).

G-actions

A (right) $\widehat{\mathbb{G}}$ -operator system is a pair (X,α) where X is an operator system and $\alpha: X \to X \overline{\otimes} \mathscr{L}^{\infty}(\widehat{\mathbb{G}})$ is a uci map such that $(\alpha \overline{\otimes} \operatorname{id})\alpha = (\operatorname{id} \overline{\otimes} \widehat{\Delta})\alpha$. We will write $X \stackrel{\alpha}{\bowtie} \widehat{\mathbb{G}}$ and say that α defines a right $\widehat{\mathbb{G}}$ -action on the operator system X.

- ▶ If X is a C^* -algebra, then $X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \cong \prod_{\pi \in Irr(\mathbb{G})} (X \otimes B(\mathcal{H}_{\pi}))$ carries a natural C^* -algebra structure. Then α is a *-homomorphism (result by S. Vaes).
- Equivalent description in terms of $\mathcal{O}(\mathbb{G})$ -module operator systems.

G-actions

A (right) $\widehat{\mathbb{G}}$ -operator system is a pair (X,α) where X is an operator system and $\alpha: X \to X \overline{\otimes} \mathscr{L}^{\infty}(\widehat{\mathbb{G}})$ is a uci map such that $(\alpha \overline{\otimes} \operatorname{id})\alpha = (\operatorname{id} \overline{\otimes} \widehat{\Delta})\alpha$. We will write $X \stackrel{\alpha}{\bowtie} \widehat{\mathbb{G}}$ and say that α defines a right $\widehat{\mathbb{G}}$ -action on the operator system X.

- ▶ If X is a C^* -algebra, then $X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \cong \prod_{\pi \in Irr(\mathbb{G})} (X \otimes B(\mathcal{H}_{\pi}))$ carries a natural C^* -algebra structure. Then α is a *-homomorphism (result by S. Vaes).
- Equivalent description in terms of $\mathcal{O}(\mathbb{G})$ -module operator systems.
- ▶ Notion of G-equivariant map and G-injective operator system defined in the obvious way.

Elementary properties

Let (\mathbf{X}, α) be a $\widehat{\mathbb{G}}$ -operator system.

Elementary properties

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

▶ If **X** is injective, then $(X \overline{\otimes} \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), id_X \overline{\otimes} \hat{\Delta})$ is $\widehat{\mathbb{G}}$ -injective.

Elementary properties

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

- ▶ If **X** is injective, then $(X \overline{\otimes} \mathcal{L}^{\infty}(\widehat{\mathbb{G}}), id_X \overline{\otimes} \widehat{\Delta})$ is $\widehat{\mathbb{G}}$ -injective.
- ► The following statements are equivalent:

Elementary properties

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

- ▶ If **X** is injective, then $(X \overline{\otimes} \mathcal{L}^{\infty}(\widehat{\mathbb{G}}), id_X \overline{\otimes} \widehat{\Delta})$ is $\widehat{\mathbb{G}}$ -injective.
- ► The following statements are equivalent:
 - 1. (X, α) is $\widehat{\mathbb{G}}$ -injective.

Elementary properties

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

- ▶ If **X** is injective, then $(X \overline{\otimes} \mathcal{L}^{\infty}(\widehat{\mathbb{G}}), id_X \overline{\otimes} \widehat{\Delta})$ is $\widehat{\mathbb{G}}$ -injective.
- ► The following statements are equivalent:
 - 1. (X, α) is $\widehat{\mathbb{G}}$ -injective.
 - 2. X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp conditional expectation $(X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \widehat{\Delta}) \to (\alpha(X), \operatorname{id} \otimes \widehat{\Delta})$.

CROSSED PRODUCTS

Let (\mathbf{X}, α) be a $\widehat{\mathbb{G}}$ -operator system.

CROSSED PRODUCTS

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

Reduced crossed product

$$\textbf{\textit{X}} \rtimes_{\alpha,r} \widehat{\mathbb{G}} \coloneqq \overline{\operatorname{span}}^{\|\cdot\|} \{\alpha(\textbf{\textit{x}})(1 \otimes \lambda(\textbf{\textit{a}})) : \textbf{\textit{x}} \in \textbf{\textit{X}}, \textbf{\textit{a}} \in \mathcal{O}(\mathbb{G})\} \subseteq \textbf{\textit{X}} \overline{\otimes} B(L^2(\mathbb{G}))$$

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

Reduced crossed product

$$X\rtimes_{\alpha,r}\widehat{\mathbb{G}}:=\overline{\operatorname{span}}^{\|\cdot\|}\{\alpha(x)(1\otimes\lambda(a)):x\in X,a\in\mathcal{O}(\mathbb{G})\}\subseteq X\overline{\otimes}B(L^2(\mathbb{G}))$$

$$X\rtimes_{\alpha,\mathcal{F}}\widehat{\mathbb{G}}:=\{z\in X\overline{\otimes}B(L^2(\mathbb{G})):(\mathrm{id}_X\,\overline{\otimes}\hat{\Delta}_I)(z)=(\alpha\overline{\otimes}\,\mathrm{id})(z)\}$$

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

Reduced crossed product

$$X\rtimes_{\alpha,r}\widehat{\mathbb{G}}:=\overline{\operatorname{span}}^{\|\cdot\|}\{\alpha(x)(1\otimes\lambda(a)):x\in X,a\in\mathcal{O}(\mathbb{G})\}\subseteq X\overline{\otimes}B(L^2(\mathbb{G}))$$

Fubini crossed product

$$X\rtimes_{\alpha,\mathcal{F}}\widehat{\mathbb{G}}\coloneqq \{z\in X\overline{\otimes}B(L^2(\mathbb{G})): (\mathrm{id}_X\,\overline{\otimes}\hat{\Delta}_I)(z)=(\alpha\overline{\otimes}\,\mathrm{id})(z)\}$$

▶ In general, $X \rtimes_{\alpha,r} \widehat{\mathbb{G}} \subseteq X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

Reduced crossed product

$$X\rtimes_{\alpha,r}\widehat{\mathbb{G}}\coloneqq\overline{\operatorname{span}}^{\|\cdot\|}\{\alpha(x)(1\otimes\lambda(a)):x\in X,a\in\mathcal{O}(\mathbb{G})\}\subseteq X\overline{\otimes}B(L^2(\mathbb{G}))$$

$$X\rtimes_{\alpha,\mathcal{F}}\widehat{\mathbb{G}}\coloneqq \{z\in X\overline{\otimes}B(L^2(\mathbb{G})): (\mathrm{id}_X\,\overline{\otimes}\hat{\Delta}_I)(z)=(\alpha\overline{\otimes}\,\mathrm{id})(z)\}$$

- ▶ In general, $X \rtimes_{\alpha,r} \widehat{\mathbb{G}} \subseteq X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
- ▶ $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is a $C_r(\mathbb{G})$ -bimodule.

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

Reduced crossed product

$$X\rtimes_{\alpha,r}\widehat{\mathbb{G}}\coloneqq\overline{\operatorname{span}}^{\|\cdot\|}\{\alpha(x)(1\otimes\lambda(a)):x\in X,a\in\mathcal{O}(\mathbb{G})\}\subseteq X\overline{\otimes}B(L^2(\mathbb{G}))$$

$$X\rtimes_{\alpha,\mathcal{F}}\widehat{\mathbb{G}}\coloneqq \{z\in X\overline{\otimes}B(L^2(\mathbb{G})): (\mathrm{id}_X\,\overline{\otimes}\hat{\Delta}_I)(z)=(\alpha\overline{\otimes}\,\mathrm{id})(z)\}$$

- ▶ In general, $X \rtimes_{\alpha,r} \widehat{\mathbb{G}} \subseteq X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
- $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is a $C_r(\mathbb{G})$ -bimodule.
- Generalise classical crossed products.

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system.

Reduced crossed product

$$X\rtimes_{\alpha,r}\widehat{\mathbb{G}}\coloneqq\overline{\operatorname{span}}^{\|\cdot\|}\{\alpha(x)(1\otimes\lambda(a)):x\in X,a\in\mathcal{O}(\mathbb{G})\}\subseteq X\overline{\otimes}B(L^2(\mathbb{G}))$$

$$X\rtimes_{\alpha,\mathcal{F}}\widehat{\mathbb{G}}\coloneqq \{z\in X\overline{\otimes}B(L^2(\mathbb{G})): (\mathrm{id}_X\,\overline{\otimes}\hat{\Delta}_I)(z)=(\alpha\overline{\otimes}\,\mathrm{id})(z)\}$$

- ▶ In general, $X \rtimes_{\alpha,r} \widehat{\mathbb{G}} \subseteq X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
- $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is a $C_r(\mathbb{G})$ -bimodule.
- Generalise classical crossed products.
- If $X \stackrel{\tau}{\sim} \widehat{\mathbb{G}}$ trivially, then $X \rtimes_{\tau,r} \widehat{\mathbb{G}} = X \otimes C_r(\mathbb{G})$ and $X \rtimes_{\tau,\mathcal{F}} \widehat{\mathbb{G}} = X \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G})$.

Injectivity of Fubini crossed product

If $\mathbb G$ is a CQG and (X,α) a $\widehat{\mathbb G}$ -operator system, consider:

Injectivity of Fubini crossed product

If \mathbb{G} is a CQG and (X, α) a $\widehat{\mathbb{G}}$ -operator system, consider:

- 1. (X, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is injective.

Injectivity of Fubini crossed product

If \mathbb{G} is a CQG and (X, α) a $\widehat{\mathbb{G}}$ -operator system, consider:

- 1. (\mathbf{X}, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is injective.

Then (1) \Longrightarrow (2) and (2) \Longrightarrow (1) if \mathbb{G} is of Kac type.

Injectivity of Fubini crossed product

If \mathbb{G} is a CQG and (X, α) a $\widehat{\mathbb{G}}$ -operator system, consider:

- 1. (X, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is injective.

Then (1) \implies (2) and (2) \implies (1) if \mathbb{G} is of Kac type.

- ▶ Taking $X = \mathbb{C}$, we recover the equivalence of the following two statements in the Kac-case:
 - 1. $\widehat{\mathbb{G}}$ amenable.
 - 2. $\mathscr{L}^{\infty}(\mathbb{G})$ is injective.

Injectivity of Fubini crossed product

If \mathbb{G} is a CQG and (X, α) a $\widehat{\mathbb{G}}$ -operator system, consider:

- 1. (\mathbf{X}, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is injective.

Then (1) \implies (2) and (2) \implies (1) if \mathbb{G} is of Kac type.

- ▶ Taking $X = \mathbb{C}$, we recover the equivalence of the following two statements in the Kac-case:
 - 1. $\widehat{\mathbb{G}}$ amenable.
 - 2. $\mathcal{L}^{\infty}(\mathbb{G})$ is injective.
- Little hope to generalise this statement outside the Kac case.

Injectivity of Fubini crossed product

If \mathbb{G} is a CQG and (X, α) a $\widehat{\mathbb{G}}$ -operator system, consider:

- 1. (\mathbf{X}, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is injective.

Then (1) \Longrightarrow (2) and (2) \Longrightarrow (1) if \mathbb{G} is of Kac type.

- ▶ Taking $X = \mathbb{C}$, we recover the equivalence of the following two statements in the Kac-case:
 - 1. $\widehat{\mathbb{G}}$ amenable.
 - 2. $\mathcal{L}^{\infty}(\mathbb{G})$ is injective.
- Little hope to generalise this statement outside the Kac case.
- We can still repair the statement by asking for equivariant injectivity of the crossed products!

▶ Fix a $\widehat{\mathbb{G}}$ -operator system (X, α) and consider $X \rtimes_{\alpha, r} \widehat{\mathbb{G}}$.

- ▶ Fix a $\widehat{\mathbb{G}}$ -operator system (X, α) and consider $X \rtimes_{\alpha, r} \widehat{\mathbb{G}}$.
- ► Consider the comultiplication $\Delta: B(L^2(\mathbb{G})) \to B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G}): x \mapsto V_{\mathbb{G}}(x \otimes 1) V_{\mathbb{G}}^*.$

- ► Fix a $\widehat{\mathbb{G}}$ -operator system (X, α) and consider $X \rtimes_{\alpha, r} \widehat{\mathbb{G}}$.
- ► Consider the comultiplication $\Delta: B(L^2(\mathbb{G})) \to B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G}): x \mapsto V_{\mathbb{G}}(x \otimes 1) V_{\mathbb{G}}^*.$
- The map

$$\operatorname{id}_X \overline{\otimes} \Delta : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G})$$

restricts to a map

$$\mathsf{id}_X \, \overline{\otimes} \Delta : X \rtimes_{\alpha,r} \, \widehat{\mathbb{G}} \to (X \rtimes_{\alpha,r} \, \widehat{\mathbb{G}}) \otimes C_r(\mathbb{G}).$$

- ▶ Fix a $\widehat{\mathbb{G}}$ -operator system (X, α) and consider $X \rtimes_{\alpha, r} \widehat{\mathbb{G}}$.
- ► Consider the comultiplication $\Delta: B(L^2(\mathbb{G})) \to B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G}): x \mapsto V_{\mathbb{G}}(x \otimes 1) V_{\mathbb{G}}^*.$
- The map

$$\operatorname{id}_X \overline{\otimes} \Delta : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G})$$

restricts to a map

$$\mathsf{id}_X \, \overline{\otimes} \Delta : X \rtimes_{\alpha,r} \, \widehat{\mathbb{G}} \to (X \rtimes_{\alpha,r} \, \widehat{\mathbb{G}}) \otimes C_r(\mathbb{G}).$$

▶ The pair $(X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, \operatorname{id}_X \overline{\otimes} \Delta)$ is a \mathbb{G} - C^* -operator system.

COTENSOR PRODUCTS

[Modulo technical details]

COTENSOR PRODUCTS

[Modulo technical details]

Cotensor product of operator systems

Suppose that X,Y,Z are operator systems and $\beta_r:X\to X\overline{\otimes}Z$ and $\beta_l:Y\to Z\overline{\otimes}Y$ ucp maps. We define the cotensor product

$$\textbf{\textit{X}} \boxtimes_{(\beta_I,\beta_I)} \textbf{\textit{Y}} \coloneqq \big\{ \xi \in \textbf{\textit{X}} \overline{\otimes} \textbf{\textit{Y}} : \big(\mathsf{id}_{\textbf{\textit{X}}} \overline{\otimes} \beta_I \big) \big(\xi \big) = \big(\beta_I \overline{\otimes} \, \mathsf{id}_{\textbf{\textit{Y}}} \big) \big(\xi \big) \big\}.$$

COTENSOR PRODUCTS

[Modulo technical details]

Cotensor product of operator systems

Suppose that X,Y,Z are operator systems and $\beta_r:X\to X\overline{\otimes}Z$ and $\beta_I:Y\to Z\overline{\otimes}Y$ ucp maps. We define the cotensor product

$$\textbf{\textit{X}}\boxtimes_{(\beta_{I},\beta_{I})}\textbf{\textit{Y}}\coloneqq \big\{\xi\in \textbf{\textit{X}}\overline{\otimes}\textbf{\textit{Y}}: \big(\mathsf{id}_{\textbf{\textit{X}}}\,\overline{\otimes}\beta_{I}\big)(\xi)=\big(\beta_{I}\overline{\otimes}\,\mathsf{id}_{\textbf{\textit{Y}}}\big)(\xi\big)\big\}.$$

Coactions of the cotensor product

If S is an operator system and $\delta: Y \to Y \overline{\otimes} S$ is a ucp map such that

$$(\mathsf{id}_Z \,\overline{\otimes} \delta) \circ \beta_I = (\beta_I \overline{\otimes} \, \mathsf{id}_S) \circ \delta$$

then the map $\mathrm{id}_X \overline{\otimes} \delta : X \overline{\otimes} Y \to X \overline{\otimes} Y \overline{\otimes} S$ restricts to a map $X \boxtimes_{(\beta_l,\beta_r)} Y \to (X \boxtimes_{(\beta_l,\beta_r)} Y) \overline{\otimes} S$.

• We can apply this to the Fubini crossed product $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}} = X \boxtimes_{(\hat{\Delta}_{l},\alpha)} B(L^{2}(\mathbb{G}))$ with $\delta = \Delta : B(L^{2}(\mathbb{G})) \to B(L^{2}(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G}).$

- We can apply this to the Fubini crossed product $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}} = X \boxtimes_{(\hat{\Delta}_l,\alpha)} B(L^2(\mathbb{G}))$ with $\delta = \Delta : B(L^2(\mathbb{G})) \to B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G}).$
- Indeed, it suffices to check that

$$(id \overline{\otimes} \Delta) \circ \hat{\Delta}_I = (\hat{\Delta}_I \overline{\otimes} id) \circ \Delta.$$

- We can apply this to the Fubini crossed product $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}} = X \boxtimes_{(\hat{\Delta}_l,\alpha)} B(L^2(\mathbb{G}))$ with $\delta = \Delta : B(L^2(\mathbb{G})) \to B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G}).$
- Indeed, it suffices to check that

$$(id \overline{\otimes} \Delta) \circ \hat{\Delta}_I = (\hat{\Delta}_I \overline{\otimes} id) \circ \Delta.$$

▶ The map $id_X \overline{\otimes} \Delta$ restricts to a map

$$X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}} \to (X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}) \overline{\otimes} \mathcal{L}^{\infty}(\mathbb{G}).$$

- We can apply this to the Fubini crossed product $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}} = X \boxtimes_{(\hat{\Delta}_l,\alpha)} B(L^2(\mathbb{G}))$ with $\delta = \Delta : B(L^2(\mathbb{G})) \to B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^{\infty}(\mathbb{G}).$
- Indeed, it suffices to check that

$$(id \overline{\otimes} \Delta) \circ \hat{\Delta}_I = (\hat{\Delta}_I \overline{\otimes} id) \circ \Delta.$$

▶ The map $id_X \overline{\otimes} \Delta$ restricts to a map

$$X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}} \to (X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}) \overline{\otimes} \mathcal{L}^{\infty}(\mathbb{G}).$$

▶ The pair $(X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}, \mathsf{id}_X \overline{\otimes} \Delta)$ is a \mathbb{G} - W^* -operator system.

We can now formulate our main result:

Main result

Let (\mathbf{X}, α) be a $\widehat{\mathbb{G}}$ -operator system. The following statements are equivalent:

We can now formulate our main result:

Main result

Let (\mathbf{X}, α) be a $\widehat{\mathbb{G}}$ -operator system. The following statements are equivalent:

1. (X, α) is $\widehat{\mathbb{G}}$ -injective.

We can now formulate our main result:

Main result

Let (\mathbf{X}, α) be a $\widehat{\mathbb{G}}$ -operator system. The following statements are equivalent:

- 1. (X, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $(X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta)$ is \mathbb{G} - W^* -injective.

We can now formulate our main result:

Main result

Let (\mathbf{X}, α) be a $\widehat{\mathbb{G}}$ -operator system. The following statements are equivalent:

- 1. (X, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $(X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta)$ is \mathbb{G} - W^* -injective.
- 3. $(X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta)$ is \mathbb{G} - C^* -injective.

We can now formulate our main result:

Main result

Let (\mathbf{X}, α) be a $\widehat{\mathbb{G}}$ -operator system. The following statements are equivalent:

- 1. (X, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $(X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta)$ is \mathbb{G} - W^* -injective.
- 3. $(X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, id \overline{\otimes} \Delta)$ is \mathbb{G} - C^* -injective.

In particular, considering $X = \mathbb{C}$, we find that the following statements are equivalent:

- 1. $\widehat{\mathbb{G}}$ is amenable.
- 2. $\mathscr{L}^{\infty}(\mathbb{G})$ is \mathbb{G} -**W***-injective.
- 3. $C_r(\mathbb{G})$ is \mathbb{G} - C^* -injective.

We can now formulate our main result:

Main result

Let (\mathbf{X}, α) be a $\widehat{\mathbb{G}}$ -operator system. The following statements are equivalent:

- 1. (X, α) is $\widehat{\mathbb{G}}$ -injective.
- 2. $(X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta)$ is \mathbb{G} - W^* -injective.
- 3. $(X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, id \overline{\otimes} \Delta)$ is \mathbb{G} - C^* -injective.

In particular, considering $X = \mathbb{C}$, we find that the following statements are equivalent:

- 1. $\widehat{\mathbb{G}}$ is amenable.
- 2. $\mathscr{L}^{\infty}(\mathbb{G})$ is \mathbb{G} - W^* -injective.
- 3. $C_r(\mathbb{G})$ is \mathbb{G} - C^* -injective.

We sketch the proof. We need two main ingredients first.

Regular elements Fubini crossed product

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system. Then

$$\mathcal{R}_{\mathsf{alg}}(\textbf{\textit{X}} \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}},\mathsf{id} \,\overline{\otimes} \Delta) = \mathsf{span}\{\alpha(\textbf{\textit{x}})(\textbf{1} \otimes \textbf{\textit{a}}) : \textbf{\textit{x}} \in \textbf{\textit{X}}, \textbf{\textit{a}} \in \mathcal{O}(\mathbb{G})\}.$$

Regular elements Fubini crossed product

Let
$$(X, \alpha)$$
 be a $\widehat{\mathbb{G}}$ -operator system. Then $\mathcal{R}_{\mathsf{alg}}(X \rtimes_{\alpha, \mathcal{F}} \widehat{\mathbb{G}}, \mathsf{id} \, \overline{\otimes} \Delta) = \mathsf{span}\{\alpha(x)(1 \otimes a) : x \in X, a \in \mathcal{O}(\mathbb{G})\}.$

Proof (Sketch).

Regular elements Fubini crossed product

Let
$$(X, \alpha)$$
 be a $\widehat{\mathbb{G}}$ -operator system. Then $\mathcal{R}_{\mathsf{alg}}(X \rtimes_{\alpha, \mathcal{F}} \widehat{\mathbb{G}}, \mathsf{id} \, \overline{\otimes} \Delta) = \mathsf{span}\{\alpha(x)(1 \otimes a) : x \in X, a \in \mathcal{O}(\mathbb{G})\}.$

Proof (Sketch).

First note that $\mathcal{R}_{\mathsf{alg}}(X\overline{\otimes}B(L^2(\mathbb{G})),\mathsf{id}\,\overline{\otimes}\Delta)=(X\overline{\otimes}\mathscr{L}^\infty(\widehat{\mathbb{G}}))(1\otimes\mathcal{O}(\mathbb{G})).$

Regular elements Fubini crossed product

Let
$$(X, \alpha)$$
 be a $\widehat{\mathbb{G}}$ -operator system. Then $\mathcal{R}_{\mathsf{alg}}(X \rtimes_{\alpha, \mathcal{F}} \widehat{\mathbb{G}}, \mathsf{id} \, \overline{\otimes} \Delta) = \mathsf{span}\{\alpha(x)(1 \otimes a) : x \in X, a \in \mathcal{O}(\mathbb{G})\}.$

Proof (Sketch).

- First note that $\mathcal{R}_{\mathsf{alg}}(X \overline{\otimes} B(L^2(\mathbb{G})), \mathsf{id} \, \overline{\otimes} \Delta) = (X \overline{\otimes} \mathcal{L}^{\infty}(\widehat{\mathbb{G}}))(1 \otimes \mathcal{O}(\mathbb{G})).$
- ▶ Thus, if $z \in \mathcal{R}_{alg}(X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}})$, we can write it as

$$z = \sum_{\pi \in \operatorname{Irr}(\mathbb{G})} \sum_{i,j=1}^{n_{\pi}} z_{ij}^{\pi} (1 \otimes u_{ij}^{\pi}), \quad z_{ij}^{\pi} \in X \overline{\otimes} \mathscr{L}^{\infty}(\widehat{\mathbb{G}}).$$

Regular elements Fubini crossed product

Let (X, α) be a $\widehat{\mathbb{G}}$ -operator system. Then $\mathcal{R}_{\mathsf{alg}}(X \rtimes_{\alpha, \mathcal{F}} \widehat{\mathbb{G}}, \mathsf{id} \, \overline{\otimes} \Delta) = \mathsf{span}\{\alpha(x)(1 \otimes a) : x \in X, a \in \mathcal{O}(\mathbb{G})\}.$

Proof (Sketch).

- First note that $\mathcal{R}_{\mathsf{alg}}(X \overline{\otimes} B(L^2(\mathbb{G})), \mathsf{id} \, \overline{\otimes} \Delta) = (X \overline{\otimes} \mathscr{L}^\infty(\widehat{\mathbb{G}}))(1 \otimes \mathcal{O}(\mathbb{G})).$
- ▶ Thus, if $z \in \mathcal{R}_{alg}(X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}})$, we can write it as

$$z = \sum_{\pi \in \operatorname{Irr}(\mathbb{G})} \sum_{i,j=1}^{n_{\pi}} z_{ij}^{\pi} (1 \otimes u_{ij}^{\pi}), \quad z_{ij}^{\pi} \in X \overline{\otimes} \mathscr{L}^{\infty}(\widehat{\mathbb{G}}).$$

▶ Show that $\mathbf{z}_{ij}^{\pi} \in \mathbf{X} \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$. Conclude that $\mathbf{z}_{ij}^{\pi} \in \alpha(\mathbf{X})$.

Automatic invariance

Let $X \subseteq B(\mathcal{H})$ be an operator system and

$$\psi: X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G}))$$

a ucp map such that $\psi(\mathbf{1} \otimes \mathbf{a}) = \mathbf{1} \otimes \mathbf{a}$ for all $\mathbf{a} \in \mathcal{O}(\mathbb{G})$. Then ψ automatically preserves the right coaction

$$\mathsf{id}_X \,\overline{\otimes} \hat{\Delta}_r : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})) \overline{\otimes} \mathscr{L}^\infty(\widehat{\mathbb{G}}).$$

Automatic invariance

Let $X \subseteq B(\mathcal{H})$ be an operator system and

$$\psi: X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G}))$$

a ucp map such that $\psi(\mathbf{1} \otimes \mathbf{a}) = \mathbf{1} \otimes \mathbf{a}$ for all $\mathbf{a} \in \mathcal{O}(\mathbb{G})$. Then ψ automatically preserves the right coaction

$$\operatorname{id}_X \overline{\otimes} \hat{\Delta}_r : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})) \overline{\otimes} \mathcal{L}^\infty(\widehat{\mathbb{G}}).$$

Proof.

Multiplicative domain argument.

X is $\widehat{\mathbb{G}}$ -injective $\Longrightarrow X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is \mathbb{G} - W^* -injective.

► The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \overline{\otimes} \widehat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.

- ► The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \hat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.
- ▶ Define $\psi := (\phi \overline{\otimes} \operatorname{id}) \circ (\operatorname{id} \overline{\otimes} \hat{\Delta}_I) : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})).$

- ► The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \hat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.
- ▶ Define $\psi := (\phi \overline{\otimes} \operatorname{id}) \circ (\operatorname{id} \overline{\otimes} \hat{\Delta}_I) : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})).$
- Show that ψ satisfies the following properties:

- ► The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \hat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.
- ▶ Define $\psi := (\phi \overline{\otimes} \operatorname{id}) \circ (\operatorname{id} \overline{\otimes} \hat{\Delta}_I) : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})).$
- Show that ψ satisfies the following properties:
 - 1. The range of ψ is contained in $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.

- ► The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \hat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.
- ▶ Define $\psi := (\phi \overline{\otimes} \operatorname{id}) \circ (\operatorname{id} \overline{\otimes} \hat{\Delta}_I) : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})).$
- Show that ψ satisfies the following properties:
 - 1. The range of ψ is contained in $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 2. ψ is the identity on $\mathbf{X} \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.

- ► The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \hat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.
- ▶ Define $\psi := (\phi \overline{\otimes} \operatorname{id}) \circ (\operatorname{id} \overline{\otimes} \hat{\Delta}_I) : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})).$
- Show that ψ satisfies the following properties:
 - 1. The range of ψ is contained in $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 2. ψ is the identity on $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 3. ψ preserves the \mathbb{G} - \mathbf{W}^* -action id $\overline{\otimes}\Delta$.

- ► The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \hat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.
- ▶ Define $\psi := (\phi \overline{\otimes} \operatorname{id}) \circ (\operatorname{id} \overline{\otimes} \hat{\Delta}_I) : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})).$
- Show that ψ satisfies the following properties:
 - 1. The range of ψ is contained in $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 2. ψ is the identity on $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 3. ψ preserves the \mathbb{G} - \mathbf{W}^* -action id $\overline{\otimes}\Delta$.
- ▶ **Conclusion**: $\psi: X \overline{\otimes} B(L^2(\mathbb{G})) \to X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is a \mathbb{G} - W^* -ucp conditional expectation, thus $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is \mathbb{G} - W^* -injective.

X is $\widehat{\mathbb{G}}$ -injective $\Longrightarrow X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is \mathbb{G} - W^* -injective.

- ► The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \hat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.
- ▶ Define $\psi := (\phi \overline{\otimes} \operatorname{id}) \circ (\operatorname{id} \overline{\otimes} \hat{\Delta}_I) : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})).$
- Show that ψ satisfies the following properties:
 - 1. The range of ψ is contained in $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 2. ψ is the identity on $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 3. ψ preserves the \mathbb{G} - \mathbf{W}^* -action id $\overline{\otimes}\Delta$.
- ▶ **Conclusion**: $\psi: X \overline{\otimes} B(L^2(\mathbb{G})) \to X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is a \mathbb{G} - W^* -ucp conditional expectation, thus $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is \mathbb{G} - W^* -injective.

 $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is \mathbb{G} - W^* -injective $\Longrightarrow X \rtimes_{\alpha,r} \widehat{\mathbb{G}}$ is \mathbb{G} - C^* -injective.

X is $\widehat{\mathbb{G}}$ -injective $\Longrightarrow X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is \mathbb{G} - W^* -injective.

- ▶ The assumption means that X is injective and there exists a $\widehat{\mathbb{G}}$ -equivariant ucp map $\phi: (X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}), \operatorname{id} \otimes \hat{\Delta}) \to X$ such that $\phi \circ \alpha = \operatorname{id}$.
- ▶ Define $\psi := (\phi \overline{\otimes} \operatorname{id}) \circ (\operatorname{id} \overline{\otimes} \hat{\Delta}_I) : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \overline{\otimes} B(L^2(\mathbb{G})).$
- Show that ψ satisfies the following properties:
 - 1. The range of ψ is contained in $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 2. ψ is the identity on $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$.
 - 3. ψ preserves the \mathbb{G} - \mathbf{W}^* -action id $\overline{\otimes}\Delta$.
- ▶ **Conclusion**: $\psi : X \overline{\otimes} B(L^2(\mathbb{G})) \to X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is a \mathbb{G} - W^* -ucp conditional expectation, thus $X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is \mathbb{G} - W^* -injective.

$X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}$ is \mathbb{G} - W^* -injective $\Longrightarrow X \rtimes_{\alpha,r} \widehat{\mathbb{G}}$ is \mathbb{G} - C^* -injective.

▶ Since $\mathcal{R}(X \rtimes_{\alpha,\mathcal{F}} \widehat{\mathbb{G}}) = X \rtimes_{\alpha,r} \widehat{\mathbb{G}}$ (Ingredient 1).

 $X \rtimes_{\alpha,r} \widehat{\mathbb{G}}$ is $\mathbb{G}\text{-}C^*$ -injective $\Longrightarrow X$ is $\widehat{\mathbb{G}}$ -injective.

▶ Embed $X \subseteq B(\mathcal{H})$.

- ▶ Embed $X \subseteq B(\mathcal{H})$.
- ► Choose a ℂ-C*-ucp conditional expectation

$$P: \mathcal{R}(X\overline{\otimes}B(L^2(\mathbb{G})), \operatorname{id} \overline{\otimes}\Delta) \to (X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes}\Delta).$$

- ▶ Embed $X \subseteq B(\mathcal{H})$.
- ▶ Choose a \mathbb{G} - C^* -ucp conditional expectation $P: \mathcal{R}(X \overline{\otimes} B(L^2(\mathbb{G})), \operatorname{id} \overline{\otimes} \Delta) \to (X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta).$
- ▶ Use Arveson's extension theorem to choose an ucp extension $\widetilde{P}: B(\mathcal{H}) \overline{\otimes} B(L^2(\mathbb{G})) \to B(\mathcal{H}) \overline{\otimes} B(L^2(\mathbb{G}))$.

- ▶ Embed $X \subseteq B(\mathcal{H})$.
- ► Choose a \mathbb{G} - C^* -ucp conditional expectation $P: \mathcal{R}(X \overline{\otimes} B(L^2(\mathbb{G})), \operatorname{id} \overline{\otimes} \Delta) \to (X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta).$
- ▶ Use Arveson's extension theorem to choose an ucp extension $\widetilde{P}: B(\mathcal{H})\overline{\otimes}B(L^2(\mathbb{G})) \to B(\mathcal{H})\overline{\otimes}B(L^2(\mathbb{G}))$.
- Since \widetilde{P} acts identically on $1 \otimes \mathcal{O}(\mathbb{G})$, it preserves the action id $\overline{\otimes} \hat{\Delta}_r$ (Ingredient 2).

- ▶ Embed $X \subseteq B(\mathcal{H})$.
- ► Choose a \mathbb{G} - C^* -ucp conditional expectation $P: \mathcal{R}(X \overline{\otimes} B(L^2(\mathbb{G})), \operatorname{id} \overline{\otimes} \Delta) \to (X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta).$
- ▶ Use Arveson's extension theorem to choose an ucp extension $\widetilde{P}: B(\mathcal{H})\overline{\otimes}B(L^2(\mathbb{G})) \to B(\mathcal{H})\overline{\otimes}B(L^2(\mathbb{G}))$.
- Since \widetilde{P} acts identically on $1 \otimes \mathcal{O}(\mathbb{G})$, it preserves the action id $\overline{\otimes} \hat{\Delta}_{r}$ (Ingredient 2).
- ▶ Since P is \mathbb{G} - C^* -equivariant, it induces a $\widehat{\mathbb{G}}$ -equivariant map $Q: \operatorname{Fix}(X \otimes B(L^2(\mathbb{G}))) = X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \to \operatorname{Fix}(X \rtimes_{\alpha,r} \widehat{\mathbb{G}}) = \alpha(X).$

- ▶ Embed $X \subseteq B(\mathcal{H})$.
- ► Choose a \mathbb{G} - C^* -ucp conditional expectation $P: \mathcal{R}(X \overline{\otimes} B(L^2(\mathbb{G})), \operatorname{id} \overline{\otimes} \Delta) \to (X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta).$
- ▶ Use Arveson's extension theorem to choose an ucp extension $\widetilde{P}: B(\mathcal{H}) \overline{\otimes} B(L^2(\mathbb{G})) \to B(\mathcal{H}) \overline{\otimes} B(L^2(\mathbb{G}))$.
- Since \widetilde{P} acts identically on $1 \otimes \mathcal{O}(\mathbb{G})$, it preserves the action id $\overline{\otimes} \hat{\Delta}_{r}$ (Ingredient 2).
- ▶ Since P is \mathbb{G} - C^* -equivariant, it induces a $\widehat{\mathbb{G}}$ -equivariant map $Q: \operatorname{Fix}(X \otimes B(L^2(\mathbb{G}))) = X \otimes \mathscr{L}^{\infty}(\widehat{\mathbb{G}}) \to \operatorname{Fix}(X \rtimes_{\alpha,r} \widehat{\mathbb{G}}) = \alpha(X).$
- ▶ X is injective since there is a \mathbb{G} - C^* -conditional expectation $E: (X \rtimes_{\alpha,r} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta) \to (X, \tau).$

Relevant definitions

Relevant definitions

Let X be a \mathbb{G} - C^* -operator system.

A pair (Y, ι) is called \mathbb{G} - \mathbb{C}^* -extension of X if Y is a \mathbb{G} - \mathbb{C}^* -operator system and $\iota: X \to Y$ is a \mathbb{G} - \mathbb{C}^* -equivariant uci map.

Relevant definitions

- A pair (Y, ι) is called G-C*-extension of X if Y is a G-C*-operator system and ι: X → Y is a G-C*-equivariant uci map.
- ► The G-C*-extension (Y, ι) is called G-C*-rigid if it has the property that if $\phi : Y \to Y$ is a ucp map with $\phi \iota = \iota$, then $\phi = \mathrm{id}_Y$.

Relevant definitions

- A pair (Y, ι) is called G-C*-extension of X if Y is a G-C*-operator system and ι: X → Y is a G-C*-equivariant uci map.
- ► The G-C*-extension (Y, ι) is called G-C*-rigid if it has the property that if $\phi: Y \to Y$ is a ucp map with $\phi\iota = \iota$, then $\phi = \mathrm{id}_Y$.
- ▶ It is called \mathbb{G} - \mathbb{C}^* -injective extension of X if Y is \mathbb{G} - \mathbb{C}^* -injective.

Relevant definitions

- A pair (Y, ι) is called G-C*-extension of X if Y is a G-C*-operator system and ι: X → Y is a G-C*-equivariant uci map.
- ► The G-C*-extension (Y, ι) is called G-C*-rigid if it has the property that if $\phi : Y \to Y$ is a ucp map with $\phi \iota = \iota$, then $\phi = \mathrm{id}_Y$.
- ► It is called **G-C*-injective extension** of **X** if **Y** is **G-C*-injective**.
- A \mathbb{G} - C^* -injective extension of X is called \mathbb{G} - C^* -injective envelope if the situation $\iota(X) \subseteq \widetilde{X} \subseteq Y$ with \widetilde{X} a \mathbb{G} - C^* -injective operator subsystem of Y implies that $\widetilde{X} = Y$.

Relevant definitions

Let X be a \mathbb{G} - C^* -operator system.

- ▶ A pair (Y, ι) is called \mathbb{G} - \mathbb{C}^* -extension of X if Y is a \mathbb{G} - \mathbb{C}^* -operator system and $\iota: X \to Y$ is a \mathbb{G} - \mathbb{C}^* -equivariant uci map.
- ► The G-C*-extension (Y, ι) is called G-C*-rigid if it has the property that if $\phi : Y \to Y$ is a ucp map with $\phi \iota = \iota$, then $\phi = \mathrm{id}_Y$.
- ► It is called **G-C*-injective extension** of **X** if **Y** is **G-C*-injective**.
- ▶ A \mathbb{G} - \mathbb{C}^* -injective extension of X is called \mathbb{G} - \mathbb{C}^* -injective envelope if the situation $\iota(X) \subseteq \widetilde{X} \subseteq Y$ with \widetilde{X} a \mathbb{G} - \mathbb{C}^* -injective operator subsystem of Y implies that $\widetilde{X} = Y$.

Similar definitions are made for $\widehat{\mathbb{G}}$ -operator systems.

Existence and uniqueness

Let X be a \mathbb{G} - C^* -operator system. There exists a \mathbb{G} - C^* -injective envelope (S,ι) for X. If $(\widetilde{S},\widetilde{\iota})$ is another \mathbb{G} - C^* -injective envelope, there exists a unique \mathbb{G} - C^* -unital order isomorphism $\theta:S\to\widetilde{S}$ such that $\theta\circ\iota=\widetilde{\iota}$. commutes. Moreover, $(S,\iota:X\to S)$ is a \mathbb{G} - C^* -injective envelope if and only if (S,ι) is \mathbb{G} - C^* -injective and \mathbb{G} - C^* -rigid.

Existence and uniqueness

Let X be a \mathbb{G} - C^* -operator system. There exists a \mathbb{G} - C^* -injective envelope (S,ι) for X. If $(\widetilde{S},\widetilde{\iota})$ is another \mathbb{G} - C^* -injective envelope, there exists a unique \mathbb{G} - C^* -unital order isomorphism $\theta:S\to\widetilde{S}$ such that $\theta\circ\iota=\widetilde{\iota}$. commutes. Moreover, $(S,\iota:X\to S)$ is a \mathbb{G} - C^* -injective envelope if and only if (S,ι) is \mathbb{G} - C^* -injective and \mathbb{G} - C^* -rigid.

▶ Notation: $I_{\mathbb{G}}^{C^*}(X)$ is the \mathbb{G} - C^* -injective envelope of X.

Existence and uniqueness

Let X be a \mathbb{G} - C^* -operator system. There exists a \mathbb{G} - C^* -injective envelope (S,ι) for X. If $(\widetilde{S},\widetilde{\iota})$ is another \mathbb{G} - C^* -injective envelope, there exists a unique \mathbb{G} - C^* -unital order isomorphism $\theta:S\to\widetilde{S}$ such that $\theta\circ\iota=\widetilde{\iota}$. commutes. Moreover, $(S,\iota:X\to S)$ is a \mathbb{G} - C^* -injective envelope if and only if (S,ι) is \mathbb{G} - C^* -injective and \mathbb{G} - C^* -rigid.

- ▶ Notation: $I_{\mathbb{G}}^{C^*}(X)$ is the \mathbb{G} - C^* -injective envelope of X.
- A similar true is for $\widehat{\mathbb{G}}$ -operator systems.

Existence and uniqueness

Let X be a \mathbb{G} - C^* -operator system. There exists a \mathbb{G} - C^* -injective envelope (S,ι) for X. If $(\widetilde{S},\widetilde{\iota})$ is another \mathbb{G} - C^* -injective envelope, there exists a unique \mathbb{G} - C^* -unital order isomorphism $\theta:S\to\widetilde{S}$ such that $\theta\circ\iota=\widetilde{\iota}$. commutes. Moreover, $(S,\iota:X\to S)$ is a \mathbb{G} - C^* -injective envelope if and only if (S,ι) is \mathbb{G} - C^* -injective and \mathbb{G} - C^* -rigid.

- ▶ Notation: $I_{\mathbb{G}}^{C^*}(X)$ is the \mathbb{G} - C^* -injective envelope of X.
- A similar true is for $\widehat{\mathbb{G}}$ -operator systems.
- ▶ Notation: $I_{\widehat{\mathbb{G}}}(X)$ is the $\widehat{\mathbb{G}}$ -injective envelope of X.

Proof.			

Proof.

▶ That \mathbb{G} - C^* -injective + \mathbb{G} - C^* -rigid $\Longrightarrow \mathbb{G}$ - C^* -injective envelope is immediately checked.

Proof.

- ▶ That \mathbb{G} - \mathbb{C}^* -injective + \mathbb{G} - \mathbb{C}^* -rigid $\Longrightarrow \mathbb{G}$ - \mathbb{C}^* -injective envelope is immediately checked.
- ▶ Embed $X \subseteq B(\mathcal{H})$ and consider $Y := \mathcal{R}(B(\mathcal{H}) \overline{\otimes} B(L^2(\mathbb{G})))$, which is a \mathbb{G} - \mathbb{C}^* -injective operator system.

Proof.

- ▶ That \mathbb{G} - C^* -injective + \mathbb{G} - C^* -rigid $\Longrightarrow \mathbb{G}$ - C^* -injective envelope is immediately checked.
- ▶ Embed $X \subseteq B(\mathcal{H})$ and consider $Y := \mathcal{R}(B(\mathcal{H}) \overline{\otimes} B(L^2(\mathbb{G})))$, which is a \mathbb{G} - C^* -injective operator system.
- ▶ Consider the set \mathcal{G} of \mathbb{G} - \mathbf{C}^* -ucp maps $\phi: \mathbf{Y} \to \mathbf{Y}$ that satisfy $\phi \circ \alpha = \alpha$.

Proof.

- ▶ That \mathbb{G} - C^* -injective + \mathbb{G} - C^* -rigid $\Longrightarrow \mathbb{G}$ - C^* -injective envelope is immediately checked.
- ▶ Embed $X \subseteq B(\mathcal{H})$ and consider $Y := \mathcal{R}(B(\mathcal{H}) \overline{\otimes} B(L^2(\mathbb{G})))$, which is a \mathbb{G} - C^* -injective operator system.
- ► Consider the set \mathcal{G} of \mathbb{G} - \mathbb{C}^* -ucp maps $\phi: \mathbb{Y} \to \mathbb{Y}$ that satisfy $\phi \circ \alpha = \alpha$.
- ▶ Choose a minimal idempotent $\phi_0 \in \mathcal{G}$ and check that $\phi_0(Y)$ is a \mathbb{G} - C^* -injective envelope.

G-C*-Rigidity of reduced crossed products

Let $(X, \alpha), (Y, \beta)$ be $\widehat{\mathbb{G}}$ -operator systems and $\iota : (X, \alpha) \to (Y, \beta)$ be an equivariant uci map. The following statements are equivalent:

G-C*-Rigidity of reduced crossed products

Let $(X, \alpha), (Y, \beta)$ be $\widehat{\mathbb{G}}$ -operator systems and $\iota : (X, \alpha) \to (Y, \beta)$ be an equivariant uci map. The following statements are equivalent:

1. $(\mathbf{Y}, \iota : (\mathbf{X}, \alpha) \to (\mathbf{Y}, \beta))$ is a $\widehat{\mathbb{G}}$ -rigid extension of \mathbf{X} .

G-C*-Rigidity of reduced crossed products

Let $(X, \alpha), (Y, \beta)$ be $\widehat{\mathbb{G}}$ -operator systems and $\iota : (X, \alpha) \to (Y, \beta)$ be an equivariant uci map. The following statements are equivalent:

- 1. $(\mathbf{Y}, \iota : (\mathbf{X}, \alpha) \to (\mathbf{Y}, \beta))$ is a $\widehat{\mathbb{G}}$ -rigid extension of \mathbf{X} .
- 2. $(Y \rtimes_{r,\beta} \widehat{\mathbb{G}}, \iota \rtimes_r \widehat{\mathbb{G}} : (X \rtimes_{r,\alpha} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta) \to (Y \rtimes_{r,\beta} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta))$ is a \mathbb{G} - \mathbb{C}^* -rigid extension of $X \rtimes_{r,\alpha} \widehat{\mathbb{G}}$.

G-C*-Rigidity of reduced crossed products

Let $(X, \alpha), (Y, \beta)$ be $\widehat{\mathbb{G}}$ -operator systems and $\iota : (X, \alpha) \to (Y, \beta)$ be an equivariant uci map. The following statements are equivalent:

- 1. $(Y, \iota : (X, \alpha) \to (Y, \beta))$ is a $\widehat{\mathbb{G}}$ -rigid extension of X.
- 2. $(Y \rtimes_{r,\beta} \widehat{\mathbb{G}}, \iota \rtimes_r \widehat{\mathbb{G}} : (X \rtimes_{r,\alpha} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta) \to (Y \rtimes_{r,\beta} \widehat{\mathbb{G}}, \operatorname{id} \overline{\otimes} \Delta))$ is a \mathbb{G} - \mathbb{C}^* -rigid extension of $X \rtimes_{r,\alpha} \widehat{\mathbb{G}}$.

Equivariant injective envelopes and crossed products

Let X be a $\widehat{\mathbb{G}}$ -operator system. Let (Y, ι) be a $\widehat{\mathbb{G}}$ -extension of X. Then (Y, ι) is the $\widehat{\mathbb{G}}$ -injective envelope of X if and only if $(Y \rtimes_r \widehat{\mathbb{G}}, \iota \rtimes_r \widehat{\mathbb{G}})$ is the \mathbb{G} - C^* -injective envelope of $X \rtimes_r \widehat{\mathbb{G}}$. In particular,

$$I_{\widehat{\mathbb{G}}}(X) \rtimes_r \widehat{\mathbb{G}} = I_{\mathbb{G}}^{C^*}(X \rtimes_r \widehat{\mathbb{G}}).$$

RELEVANT LITERATURE

Joeri De Ro and Lucas Hataishi

"Actions of compact and discrete quantum groups on operator systems"

Erik Habbestad, Lucas Hataishi, and Sergey Neshveyev

"Noncommutative Poisson boundaries and Furstenberg-Hamana boundaries of Drinfeld doubles"

Masamichi Hamana

"Tensor products for monotone complete $oldsymbol{\mathcal{C}}^*$ -algebras. I, II"

🗎 Mehrdad Kalantar, Paweł Kasprzak, Adam Skalski and Roland Vergnioux

"Noncommutative Furstenberg boundary"