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GOAL AND CONTENT

Main goal: Introduce notions of actions of compact and discrete
quantum groups on operator systems, and study equivariant
injectivity of crossed products.

Content presentation:

1. Operator systems and tensor products

2. The classical picture

3. Quantum groups

4. Actions of quantum groups

5. Injectivity of crossed products
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OPERATOR SYSTEMS AND TENSOR PRODUCTS

Operator system

An operator system X is a norm-closed, self-adjoint subspace of
a unital C∗-algebra A such that 1A ∈ X.

Tensor products of operator systems

Let X ⊆ B(H),Y ⊆ B(K) be operator systems.
▸ We define

X ⊗ Y = span∥⋅∥{x⊗ y ∶ x ∈ X, y ∈ Y} ⊆ B(H ⊗K)

and call it the minimal tensor product of operator systems.
▸ We define the Fubini tensor product X⊗Y to be the set of all

z ∈ B(H ⊗K) such that (ω⊗ id)(z) ∈ Y for all ω ∈ B(H)∗ and
(id⊗χ)(z) ∈ X for all χ ∈ B(K)∗.
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THE CLASSICAL PICTURE

▸ Fix a discrete group Γ, a C∗-algebra A and a group action
β ∶ Γ→ Aut(A).

Fubini crossed product (Hamana, 1980)

The set

A ⋊α,F Γ ∶= {z ∈ A⊗B(ℓ2(Γ)) ∶ ∀g,h,k ∈ Γ ∶ βg−1(zh,k) = zhg,kg}

is called the Fubini crossed product.
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THE CLASSICAL PICTURE

Injectivity of Fubini crossed product (Hamana, 1981)

The following statements are equivalent:
▸ A is Γ-injective.
▸ A ⋊α,F Γ is injective.

▸ Taking A = C, we find that the following statements are
equivalent:
▸ Γ is amenable.

▸ L(Γ), the left group von Neumann algebra, is injective.

▸ Goal: Find suitable generalisation when the discrete group Γ
is replaced by a discrete quantum group.
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COMPACT QUANTUM GROUPS

▸ Let G be a CQG (in the sense of Woronowicz) with function
algebra (C(G),∆G) and Haar state φG ∶ C(G) → C with
GNS-construction (L2(G), λ, ξG).

▸ Let O(G) be the dense Hopf ∗-subalgebra of C(G).
▸ Consider the multiplicative unitaries VG and WG given by

VG(Λ(a) ⊗ Λ(b)) = (Λ⊙ Λ)(∆(a)(1⊗ b)),
W∗G(Λ(a) ⊗ Λ(b)) = (Λ⊙ Λ)(∆(b)(a⊗ 1)).

▸ We define Cr(G) = λ(C(G)) and L∞(G) ∶= Cr(G)′′ and we
endow them with their usual coproduct

∆(x) = VG(x⊗ 1)V∗G, x ∈ B(L2(G)).
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DISCRETE QUANTUM GROUPS

▸ Consider the multiplier Hopf ∗-algebra (cc(Ĝ), ∆̃) dual to
(O(G),∆), i.e.

cc(Ĝ) = {φG(−a) ∶ a ∈ O(G)}, ∆̃(ω)(a⊗ b) = ω(ab).
▸ Define dual GNS-maps Γ̂, Λ̂ ∶ cc(Ĝ) → B(L2(G)) by

Γ̂(φG(−a)) = Λ(a), Λ̂(ω) = Γ̂(ω ⋆ δ−1/2).
▸ With respect to these GNS-maps, we can define the

multiplicative unitaries VĜ,WĜ ∈ B(L2(G) ⊗ L2(G)).

▸ We also define λ̂ ∶ cc(Ĝ) → B(L2(G)) by

λ̂(ω)Γ̂(χ) ∶= Γ̂(ω ⋆ χ)
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▸ We also define λ̂ ∶ cc(Ĝ) → B(L2(G)) by
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Γ̂(φG(−a)) = Λ(a), Λ̂(ω) = Γ̂(ω ⋆ δ−1/2).
▸ With respect to these GNS-maps, we can define the

multiplicative unitaries VĜ,WĜ ∈ B(L2(G) ⊗ L2(G)).
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(O(G),∆), i.e.
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DISCRETE QUANTUM GROUPS

▸ We define L∞(Ĝ) ∶= λ̂(cc(Ĝ))′′.
▸ L∞(Ĝ) = ∏π∈Irr(G) B(Hπ).
▸ Define the comultiplications

∆̂l ∶ B(L2(G)) → B(L2(G))⊗B(L2(G)) ∶ x ↦W∗Ĝ(1⊗ x)WĜ

∆̂r ∶ B(L2(G)) → B(L2(G))⊗B(L2(G)) ∶ x ↦ VĜ(x⊗ 1)V∗Ĝ

▸ These comultiplications agree on L∞(Ĝ): ∆̂ ∶= ∆̂l = ∆̂r.
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∆̂r ∶ B(L2(G)) → B(L2(G))⊗B(L2(G)) ∶ x ↦ VĜ(x⊗ 1)V∗Ĝ

▸ These comultiplications agree on L∞(Ĝ): ∆̂ ∶= ∆̂l = ∆̂r.
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ACTIONS OF COMPACT QUANTUM GROUPS

G-C∗-actions
A right G-C∗-operator system is a pair (X, α) where X is an
operator system and α ∶ X → X ⊗ Cr(G) is a uci map such that:
▸ The coaction property is satisfied: (α⊗ id)α = (id⊗∆)α.
▸ The Podleś density condition is satisfied, i.e.
[α(X)(1⊗ Cr(G))] = X ⊗ Cr(G).

We will write X α↶ G and say that α defines a right G-C∗-action on
the operator system X.

▸ The usual spectral decomposition works.

▸ If X is a C∗-algebra, then α is automatically multiplicative!
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ACTIONS OF COMPACT QUANTUM GROUPS

G-W∗-actions
A right G-W∗-operator system is a pair (X, α) where X is an
operator system and α ∶ X → X⊗L∞(G) is a uci map such that
the coaction property is satisfied, i.e. (α⊗ id)α = (id⊗∆)α. We
will write X α↶ G and say that α defines a right G-W∗-action on
the operator system X.

Regular elements

If (X, α) is a G-W∗-operator system, we define the algebraic
regular elements and the regular elements by

Ralg(X, α) ∶= {x ∈ X ∶ α(x) ∈ X ⊙O(G)},

R(X, α) ∶= Ralg(X, α)
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EQUIVARIANT MAPS

G-C∗ and G-W∗-equivariant maps
▸ Let (X, α) and (Y, β) two G-C∗-operator systems. A ucp

map ϕ ∶ X → Y is called G-C∗-equivariant if the following
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G-EQUIVARIANT INJECTIVITY

G-C∗ and G-W∗-injectivity
▸ A G-C∗-operator system I is called G-C∗-injective if for all

G-C∗-operator systems X,Y , every G-C∗-ucp map φ ∶ X → I
and every G-C∗-uci map ι ∶ X → Y , there exists a G-C∗-ucp
map Φ ∶ Y → I such that Φι = ϕ.

X I

Y

ϕ

ι
∃Φ

▸ Similarly, G-W∗-injectivity is defined.
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G-EQUIVARIANT INJECTIVITY

Elementary properties

Let (X, α) be a G-W∗-operator system.
▸ If X is injective as an operator system, then
(X⊗B(L2(G)), idX ⊗∆) is G-W∗-injective.

▸ The following statements are equivalent:
1. (X, α) is G-W∗-injective.
2. X is injective and there exists a G-W∗ ucp conditional

expectation φ ∶ (X⊗B(L2(G)), id⊗∆) → (α(X), id⊗∆).
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ACTIONS OF DISCRETE QUANTUM GROUPS

Ĝ-actions
A (right) Ĝ-operator system is a pair (X, α) where X is an
operator system and α ∶ X → X⊗L∞(Ĝ) is a uci map such that
(α⊗ id)α = (id⊗∆̂)α. We will write X α↶ Ĝ and say that α defines
a right Ĝ-action on the operator system X.

▸ If X is a C∗-algebra, then X⊗L∞(Ĝ) ≅ ∏π∈Irr(G)(X ⊗ B(Hπ))
carries a natural C∗-algebra structure. Then α is a
∗-homomorphism (result by S. Vaes).

▸ Equivalent description in terms of O(G)-module operator
systems.

▸ Notion of Ĝ-equivariant map and Ĝ-injective operator
system defined in the obvious way.
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a right Ĝ-action on the operator system X.

▸ If X is a C∗-algebra, then X⊗L∞(Ĝ) ≅ ∏π∈Irr(G)(X ⊗ B(Hπ))
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Ĝ-EQUIVARIANT INJECTIVITY

Elementary properties

Let (X, α) be a Ĝ-operator system.
▸ If X is injective, then (X⊗L∞(Ĝ), idX ⊗∆̂) is Ĝ-injective.
▸ The following statements are equivalent:

1. (X, α) is Ĝ-injective.
2. X is injective and there exists a Ĝ-equivariant ucp conditional

expectation (X⊗L∞(Ĝ), id⊗∆̂) → (α(X), id⊗∆̂).
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Ĝ-EQUIVARIANT INJECTIVITY

Elementary properties

Let (X, α) be a Ĝ-operator system.
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expectation (X⊗L∞(Ĝ), id⊗∆̂) → (α(X), id⊗∆̂).



15
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CROSSED PRODUCTS

Let (X, α) be a Ĝ-operator system.

Reduced crossed product

X⋊α,r Ĝ ∶= span∥⋅∥{α(x)(1⊗λ(a)) ∶ x ∈ X,a ∈ O(G)} ⊆ X⊗B(L2(G))

Fubini crossed product

X ⋊α,F Ĝ ∶= {z ∈ X⊗B(L2(G)) ∶ (idX ⊗∆̂l)(z) = (α⊗ id)(z)}

▸ In general, X ⋊α,r Ĝ ⊆ X ⋊α,F Ĝ.

▸ X ⋊α,F Ĝ is a Cr(G)-bimodule.

▸ Generalise classical crossed products.

▸ If X τ↶ Ĝ trivially, then X ⋊τ,r Ĝ = X ⊗ Cr(G) and
X ⋊τ,F Ĝ = X⊗L∞(G).
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X⋊α,r Ĝ ∶= span∥⋅∥{α(x)(1⊗λ(a)) ∶ x ∈ X,a ∈ O(G)} ⊆ X⊗B(L2(G))

Fubini crossed product
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INJECTIVITY OF X ⋊α,F Ĝ

Injectivity of Fubini crossed product

If G is a CQG and (X, α) a Ĝ-operator system, consider:
1. (X, α) is Ĝ-injective.
2. X ⋊α,F Ĝ is injective.

Then (1) Ô⇒ (2) and (2) Ô⇒ (1) if G is of Kac type.

▸ Taking X = C, we recover the equivalence of the following
two statements in the Kac-case:

1. Ĝ amenable.

2. L∞(G) is injective.

▸ Little hope to generalise this statement outside the Kac
case.

▸ We can still repair the statement by asking for equivariant
injectivity of the crossed products!
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If G is a CQG and (X, α) a Ĝ-operator system, consider:
1. (X, α) is Ĝ-injective.
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case.

▸ We can still repair the statement by asking for equivariant
injectivity of the crossed products!
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Injectivity of Fubini crossed product

If G is a CQG and (X, α) a Ĝ-operator system, consider:
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G-ACTION OF REDUCED CROSSED PRODUCT

▸ Fix a Ĝ-operator system (X, α) and consider X ⋊α,r Ĝ.

▸ Consider the comultiplication
∆ ∶ B(L2(G)) → B(L2(G))⊗L∞(G) ∶ x ↦ VG(x⊗ 1)V∗G.

▸ The map

idX ⊗∆ ∶ X⊗B(L2(G)) → X⊗B(L2(G))⊗L∞(G)

restricts to a map

idX ⊗∆ ∶ X ⋊α,r Ĝ→ (X ⋊α,r Ĝ) ⊗ Cr(G).

▸ The pair (X ⋊α,r Ĝ, idX ⊗∆) is a G-C∗-operator system.
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▸ Fix a Ĝ-operator system (X, α) and consider X ⋊α,r Ĝ.

▸ Consider the comultiplication
∆ ∶ B(L2(G)) → B(L2(G))⊗L∞(G) ∶ x ↦ VG(x⊗ 1)V∗G.

▸ The map

idX ⊗∆ ∶ X⊗B(L2(G)) → X⊗B(L2(G))⊗L∞(G)

restricts to a map
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COTENSOR PRODUCTS

[Modulo technical details]

Cotensor product of operator systems

Suppose that X,Y,Z are operator systems and βr ∶ X → X⊗Z and
βl ∶ Y → Z⊗Y ucp maps. We define the cotensor product

X ⊠(βl,βr) Y ∶= {ξ ∈ X⊗Y ∶ (idX ⊗βl)(ξ) = (βr⊗ idY)(ξ)}.

Coactions of the cotensor product

If S is an operator system and δ ∶ Y → Y⊗S is a ucp map such
that

(idZ⊗δ) ○ βl = (βl⊗ idS) ○ δ

then the map idX ⊗δ ∶ X⊗Y → X⊗Y⊗S restricts to a map
X ⊠(βl,βr) Y → (X ⊠(βl,βr) Y)⊗S.
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G-ACTION OF FUBINI CROSSED PRODUCT

▸ We can apply this to the Fubini crossed product
X ⋊α,F Ĝ = X ⊠

(∆̂l,α)
B(L2(G)) with

δ =∆ ∶ B(L2(G)) → B(L2(G))⊗L∞(G).
▸ Indeed, it suffices to check that

(id⊗∆) ○ ∆̂l = (∆̂l⊗ id) ○∆.

▸ The map idX ⊗∆ restricts to a map

X ⋊α,F Ĝ→ (X ⋊α,F Ĝ)⊗L∞(G).

▸ The pair (X ⋊α,F Ĝ, idX ⊗∆) is a G-W∗-operator system.
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MAIN RESULT

We can now formulate our main result:

Main result
Let (X, α) be a Ĝ-operator system. The following statements are
equivalent:

1. (X, α) is Ĝ-injective.
2. (X ⋊α,F Ĝ, id⊗∆) is G-W∗-injective.
3. (X ⋊α,r Ĝ, id⊗∆) is G-C∗-injective.

In particular, considering X = C, we find that the following
statements are equivalent:
1. Ĝ is amenable.
2. L∞(G) is G-W∗-injective.
3. Cr(G) is G-C∗-injective.

We sketch the proof. We need two main ingredients first.
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INGREDIENT 1

Regular elements Fubini crossed product

Let (X, α) be a Ĝ-operator system. Then
Ralg(X ⋊α,F Ĝ, id⊗∆) = span{α(x)(1⊗ a) ∶ x ∈ X,a ∈ O(G)}.

Proof (Sketch).
▸ First note that

Ralg(X⊗B(L2(G)), id⊗∆) = (X⊗L∞(Ĝ))(1⊗O(G)).
▸ Thus, if z ∈ Ralg(X ⋊α,F Ĝ), we can write it as

z = ∑
π∈Irr(G)

nπ
∑
i,j=1

zπij (1⊗ uπij ), zπij ∈ X⊗L∞(Ĝ).

▸ Show that zπij ∈ X ⋊α,F Ĝ. Conclude that zπij ∈ α(X).
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Ralg(X ⋊α,F Ĝ, id⊗∆) = span{α(x)(1⊗ a) ∶ x ∈ X,a ∈ O(G)}.

Proof (Sketch).

▸ First note that
Ralg(X⊗B(L2(G)), id⊗∆) = (X⊗L∞(Ĝ))(1⊗O(G)).
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Ralg(X ⋊α,F Ĝ, id⊗∆) = span{α(x)(1⊗ a) ∶ x ∈ X,a ∈ O(G)}.

Proof (Sketch).
▸ First note that

Ralg(X⊗B(L2(G)), id⊗∆) = (X⊗L∞(Ĝ))(1⊗O(G)).
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▸ Show that zπij ∈ X ⋊α,F Ĝ. Conclude that zπij ∈ α(X).



22

INGREDIENT 1

Regular elements Fubini crossed product
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INGREDIENT 2

Automatic invariance
Let X ⊆ B(H) be an operator system and

ψ ∶ X⊗B(L2(G)) → X⊗B(L2(G))

a ucp map such that ψ(1⊗ a) = 1⊗ a for all a ∈ O(G). Then ψ
automatically preserves the right coaction

idX ⊗∆̂r ∶ X⊗B(L2(G)) → X⊗B(L2(G))⊗L∞(Ĝ).

Proof.
Multiplicative domain argument.
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PROOF MAIN RESULT

X is Ĝ-injective Ô⇒ X ⋊α,F Ĝ is G-W∗-injective.

▸ The assumption means that X is injective and there exists a
Ĝ-equivariant ucp map ϕ ∶ (X⊗L∞(Ĝ), id⊗∆̂) → X such
that ϕ ○ α = id .

▸ Define ψ ∶= (ϕ⊗ id) ○ (id⊗∆̂l) ∶ X⊗B(L2(G)) → X⊗B(L2(G)).
▸ Show that ψ satisfies the following properties:

1. The range of ψ is contained in X ⋊α,F Ĝ.
2. ψ is the identity on X ⋊α,F Ĝ.
3. ψ preserves the G-W∗-action id⊗∆.

▸ Conclusion: ψ ∶ X⊗B(L2(G)) → X ⋊α,F Ĝ is a G-W∗-ucp
conditional expectation, thus X ⋊α,F Ĝ is G-W∗-injective.

X ⋊α,F Ĝ is G-W∗-injective Ô⇒ X ⋊α,r Ĝ is G-C∗-injective.

▸ SinceR(X ⋊α,F Ĝ) = X ⋊α,r Ĝ (Ingredient 1).
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2. ψ is the identity on X ⋊α,F Ĝ.
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Ĝ-equivariant ucp map ϕ ∶ (X⊗L∞(Ĝ), id⊗∆̂) → X such
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24

PROOF MAIN RESULT
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2. ψ is the identity on X ⋊α,F Ĝ.
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25

PROOF MAIN RESULT

X ⋊α,r Ĝ is G-C∗-injective Ô⇒ X is Ĝ-injective.

▸ Embed X ⊆ B(H).
▸ Choose a G-C∗-ucp conditional expectation

P ∶ R(X⊗B(L2(G)), id⊗∆) → (X ⋊α,r Ĝ, id⊗∆).
▸ Use Arveson’s extension theorem to choose an ucp

extension P̃ ∶ B(H)⊗B(L2(G)) → B(H)⊗B(L2(G)).
▸ Since P̃ acts identically on 1⊗O(G), it preserves the action

id⊗∆̂r (Ingredient 2).
▸ Since P is G-C∗-equivariant, it induces a Ĝ-equivariant map

Q ∶ Fix(X⊗B(L2(G))) = X⊗L∞(Ĝ) → Fix(X ⋊α,r Ĝ) = α(X).
▸ X is injective since there is a G-C∗-conditional expectation

E ∶ (X ⋊α,r Ĝ, id⊗∆) → (X, τ).
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▸ Use Arveson’s extension theorem to choose an ucp

extension P̃ ∶ B(H)⊗B(L2(G)) → B(H)⊗B(L2(G)).
▸ Since P̃ acts identically on 1⊗O(G), it preserves the action

id⊗∆̂r (Ingredient 2).
▸ Since P is G-C∗-equivariant, it induces a Ĝ-equivariant map
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Q ∶ Fix(X⊗B(L2(G))) = X⊗L∞(Ĝ) → Fix(X ⋊α,r Ĝ) = α(X).
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X ⋊α,r Ĝ is G-C∗-injective Ô⇒ X is Ĝ-injective.
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▸ Use Arveson’s extension theorem to choose an ucp

extension P̃ ∶ B(H)⊗B(L2(G)) → B(H)⊗B(L2(G)).

▸ Since P̃ acts identically on 1⊗O(G), it preserves the action
id⊗∆̂r (Ingredient 2).

▸ Since P is G-C∗-equivariant, it induces a Ĝ-equivariant map
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E ∶ (X ⋊α,r Ĝ, id⊗∆) → (X, τ).



26

INJECTIVE ENVELOPES

Relevant definitions
Let X be a G-C∗-operator system.

▸ A pair (Y, ι) is called G-C∗-extension of X if Y is a
G-C∗-operator system and ι ∶ X → Y is a G-C∗-equivariant
uci map.

▸ The G-C∗-extension (Y, ι) is called G-C∗-rigid if it has the
property that if ϕ ∶ Y → Y is a ucp map with ϕι = ι, then
ϕ = idY .

▸ It is calledG-C∗-injective extension of X if Y isG-C∗-injective.
▸ A G-C∗-injective extension of X is called G-C∗-injective

envelope if the situation ι(X) ⊆ X̃ ⊆ Y with X̃ a G-C∗-injective
operator subsystem of Y implies that X̃ = Y.

Similar definitions are made for Ĝ-operator systems.
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26

INJECTIVE ENVELOPES

Relevant definitions
Let X be a G-C∗-operator system.
▸ A pair (Y, ι) is called G-C∗-extension of X if Y is a

G-C∗-operator system and ι ∶ X → Y is a G-C∗-equivariant
uci map.

▸ The G-C∗-extension (Y, ι) is called G-C∗-rigid if it has the
property that if ϕ ∶ Y → Y is a ucp map with ϕι = ι, then
ϕ = idY .

▸ It is calledG-C∗-injective extension of X if Y isG-C∗-injective.
▸ A G-C∗-injective extension of X is called G-C∗-injective

envelope if the situation ι(X) ⊆ X̃ ⊆ Y with X̃ a G-C∗-injective
operator subsystem of Y implies that X̃ = Y.

Similar definitions are made for Ĝ-operator systems.
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EQUIVARIANT INJECTIVE ENVELOPES

Existence and uniqueness

Let X be a G-C∗-operator system. There exists a G-C∗-injective
envelope (S, ι) for X. If (S̃, ι̃) is another G-C∗-injective envelope,
there exists a unique G-C∗-unital order isomorphism θ ∶ S→ S̃
such that θ ○ ι = ι̃. commutes. Moreover, (S, ι ∶ X → S) is a
G-C∗-injective envelope if and only if (S, ι) is G-C∗-injective and
G-C∗-rigid.

▸ Notation: IC∗G (X) is the G-C∗-injective envelope of X.

▸ A similar true is for Ĝ-operator systems.

▸ Notation: IĜ(X) is the Ĝ-injective envelope of X.
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EQUIVARIANT INJECTIVE ENVELOPES

Proof.

▸ That G-C∗-injective + G-C∗-rigid Ô⇒ G-C∗-injective
envelope is immediately checked.

▸ Embed X ⊆ B(H) and consider Y ∶= R(B(H)⊗B(L2(G))),
which is a G-C∗-injective operator system.

▸ Consider the set G of G-C∗-ucp maps ϕ ∶ Y → Y that satisfy
ϕ ○ α = α.

▸ Choose a minimal idempotent ϕ0 ∈ G and check that ϕ0(Y)
is a G-C∗-injective envelope.
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DUALITY OF EQUIVARIANT INJECTIVE ENVELOPES

G-C∗-Rigidity of reduced crossed products

Let (X, α), (Y, β) be Ĝ-operator systems and ι ∶ (X, α) → (Y, β)
be an equivariant uci map. The following statements are
equivalent:
1. (Y, ι ∶ (X, α) → (Y, β)) is a Ĝ-rigid extension of X.
2. (Y ⋊r,β Ĝ, ι ⋊r Ĝ ∶ (X ⋊r,α Ĝ, id⊗∆) → (Y ⋊r,β Ĝ, id⊗∆)) is a

G-C∗-rigid extension of X ⋊r,α Ĝ.

Equivariant injective envelopes and crossed products

Let X be a Ĝ-operator system. Let (Y, ι) be a Ĝ-extension of X.
Then (Y, ι) is the Ĝ-injective envelope of X if and only if
(Y ⋊r Ĝ, ι ⋊r Ĝ) is the G-C∗-injective envelope of X ⋊r Ĝ. In
particular,

IĜ(X) ⋊r Ĝ = I
C∗
G (X ⋊r Ĝ).
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IĜ(X) ⋊r Ĝ = I
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Equivariant injective envelopes and crossed products
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