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Operator system

An operator system X is a norm-closed, self-adjoint subspace of
a unital C*-algebra A such that 14 € X.

Tensor products of operator systems

Let X < B(H),Y < B(K) be operator systems.
» We define

X®Y=spanll{x®y:xeX,yeY}cB(H®K)

and call it the minimal tensor product of operator systems.

» We define the Fubini tensor product X®Y to be the set of all
ZeB(H ® K) such that (w®id)(z) € Y for all w € B(H). and
(id®x)(z) e X forall xy e B(K)..
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» Fix a discrete group I, a C*-algebra A and a group action
B:T — Aut(A).

Fubini crossed product (Hamana, 1980)
The set

AxgrTi={zeABB((*(T)): Vg,h,KeT : By1(Zhk) = Zhgke}

is called the Fubini crossed product.
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Injectivity of Fubini crossed product (Hamana, 1981)

The following statements are equivalent:
» Ais -injective.
» Ax, 7T isinjective.

» Taking A = C, we find that the following statements are
equivalent:
» [ is amenable.
» L(I), the left group von Neumann algebra, is injective.

» Goal: Find suitable generalisation when the discrete group I
is replaced by a discrete quantum group.
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» Let G be a CQG (in the sense of Woronowicz) with function
algebra (C(G), Ag) and Haar state ¢ : C(G) - C with
GNS-construction (L%(G), A, &g).

» Let O(G) be the dense Hopf =-subalgebra of C(G).

» Consider the multiplicative unitaries Vg and Wg given by

Ve(A(a) ® A(b)) = (Ao A)(A(a)(1@ b)),
Wi (@) ® A(b)) = (Ao N)(A(b)(a®T)).

» We define C;(G) = A(C(G)) and £*°(G) := C-(G)" and we
endow them with their usual coproduct

A(x)=Vo(x® Vs, xeB(LA(G)).
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» Consider the multiplier Hopf *-algebra (c¢(G), A) dual to
(0(G),N),ie.

ce(G) ={pg(-a):acO(G)}, A(w)(a®b)=w(ab).
» Define dual GNS-maps I, A : ¢.(G) — B(L%(G)) by
F(pc(-a)) =N@), Aw)=T(wxs"?)

» With respect to these GNS-maps, we can define the
multiplicative unitaries Vg, Wg € B(L?(G) ® L%(G)).

» We also define X: co(G) - B(L2(G)) by
Aw)F(x) = Fw=x)
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v

We define 2=(G) := A(cc(G))".
gw(@) = Hﬂ'ElI‘I‘(G) B(HTF)
Define the comultiplications

v

v

A;:B(L*(G)) - B(L*(G))8B(L*(G)) : x » WL (1@ X)Wz
Ar:B(L*(G)) » B(L*(G))®B(L*(G)) : x » Vg (x ® )VZ

v

These comultiplications agree on £=(G): A := A, = A,.
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G-C*-actions
A right G-C*-operator system is a pair (X, «) where X is an
operator system and a: X - X ® C,(G) is a uci map such that:

» The coaction property is satisfied: (o ® id)a = (id ®A)a.

» The Podles density condition is satisfied, i.e.

[a(X)(1®C/(G))] = X ® CH(G).

We will write X & G and say that « defines a right G-C*-action on
the operator system X.

» The usual spectral decomposition works.

» If X is a C*-algebra, then « is automatically multiplicative!
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G-W+-actions

Aright G-W*-operator system is a pair (X, «) where X is an
operator system and a:: X - X®.2*(G) is a uci map such that
the coaction property is satisfied, i.e. (a®id)a = (ild®A)a. We
will write X & G and say that « defines a right G-W*-action on
the operator system X.
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G-W+*-actions

Aright G-W*-operator system is a pair (X, «) where X is an
operator system and a: X - X®.2*(G) is a uci map such that
the coaction property is satisfied, i.e. (a®id)a = (ild®A)a. We
will write X & G and say that « defines a right G-W*-action on
the operator system X.

Regular elements

If (X, ) is a G-W*-operator system, we define the algebraic
regular elements and the regular elements by

Raig(X, ) = {xeX:a(x) e X0 O(G)},

R(X,a) = Rag(K,a) .

10
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G-C* and G-W*-equivariant maps
» Let (X,a) and (Y, 8) two G-C*-operator systems. A ucp

map ¢ : X — Y is called G-C*-equivariant if the following
diagram commutes

X ¢ > Y
|- L
X®C(G) —22 s Yo, (G)

» Let (X, ) and (Y, 8) two G-W*-operator systems. A ucp
map ¢ : X — Yis called G-W*-equivariant if the following
diagram commutes

X i > Y
I le

Xe.2>(G) —29 . veo=(G)
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» A G-C*-operator system [ is called G-C*-injective if for all
G-C*-operator systems X, Y, every G-C*-ucp map ¢ : X — |
and every G-C*-ucimap ¢ : X — Y, there exists a G-C*-ucp
map ¢ : Y — [ such that &, = ¢.
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G-C* and G-W+-injectivity

» A G-C*-operator system [ is called G-C*-injective if for all
G-C*-operator systems X, Y, every G-C*-ucp map ¢ : X — |
and every G-C*-ucimap ¢ : X — Y, there exists a G-C*-ucp
map ¢ : Y — [ such that &, = ¢.

X % I
b
Y

» Similarly, G-W*-injectivity is defined.

12
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G-EQUIVARIANT INJECTIVITY

Elementary properties

Let (X, «) be a G-W*-operator system.
» If X is injective as an operator system, then
(X®B(L?(G)),idy ®A) is G-W*-injective.
» The following statements are equivalent:
1. (X, «) is G-W*-injective.
2. X s injective and there exists a G-W* ucp conditional
expectation ¢ : (X@B(L%(G)),id®A) » (a(X),id®A).

13
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G-actions

A (right) G-operator system is a pair (X, «) where X is an
operator system and a : X - X®.£2°°(G) is a uci map such that
(a®id)a = (id®A)a. We will write X = G and say that « defines
a right G-action on the operator system X.

> If X is a C*-algebra, then X8.2*(G) = [Treirr(e) (X ® B(H4))
carries a natural C*-algebra structure. Then ais a
+-homomorphism (result by S. Vaes).

» Equivalent description in terms of O(G)-module operator
systems.

» Notion of G-equivariant map and G-injective operator
system defined in the obvious way.

14
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G-EQUIVARIANT INJECTIVITY

Elementary properties

Let (X, «) be a G-operator system.
» If X is injective, then (X&.2°(G), idy ®A) is G-injective.
» The following statements are equivalent:
1 (X, «) is G-injective.
2. Xis injective and there exists a G-equivariant ucp conditional
expectation (X®.2°(G),id®A) - (a(X),id®A).

15
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Let (X, ) be a G-operator system.

Reduced crossed product
Xx0,G =3spanl 1 {a(x)(1®\(a)) : x € X,a € O(G)} < X@B(L%(G))

Fubini crossed product
X %7 G = {ze X&B(L2(G)) : (idx ®A))(2) = (a®id)(2)}

v

In general, X s, ;G € X %0 7 G.
X %47 G is a Cr(G)-bimodule.

v

v

Generalise classical crossed products.

If X 2~ @trivially, then X »,,G = X ® C/(G) and
X 7 G = X8.2°(G).

v
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Injectivity of Fubini crossed product

If G is a CQG and (X, a) a G-operator system, consider:
1. (X,a) is G-injective.
2. X xq.7 G isinjective.

Then (1) = (2) and (2) = (1) if G is of Kac type.

» Taking X = C, we recover the equivalence of the following
two statements in the Kac-case:
1. G amenable.
2. 2 (G) isinjective.

» Little hope to generalise this statement outside the Kac
case.

» We can still repair the statement by asking for equivariant

injectivity of the crossed products! .
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v

Fix a G-operator system (X, «) and consider X », ; G.

v

Consider the comultiplication
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Suppose that X, Y, Z are operator systems and 3, : X - X®Z and
By:Y = Z®Y ucp maps. We define the cotensor product
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that
(idz®6) o B = (B®ids) o
then the map idy ®6 : X@Y — X®Y®S restricts to a map
X g(ﬁhﬁr) Y - (X E(Bl,ﬁr) Y)QS
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2. (X %47 G,id®A) is G-W*-injective.

3. (X %qr G,id®A) is G-C*-injective.
In particular, considering X = C, we find that the following
statements are equivalent:

1. G is amenable.

2. Z*(G) is G-W*-injective.

3. Cr(G) is G-C*-injective.

We sketch the proof. We need two main ingredients first.
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Let (X,) bea G-operator system. Then
Raig(X xq,7 G,id®A) =span{a(x)(1®a):xeX,ac O(G)}.

Proof (Sketch).

» First note that _
Raig(X®B(L*(G)),id®A) = (X8.£*(G)) (1@ O(G)).
» Thus, if Z € Raig (X x0,7 G), we can write it as

Ny N
z= ) Y z(leu)), zjeXez*(G).
welrr(G) iyj=1

> Show that zJ € X x,, 7 G. Conclude that 2] € a(X).
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INGREDIENT 2

Automatic invariance
Let X c B(*H) be an operator system and

¥ : XBB(LX(G)) - X@B(L2(G))

aucp map suchthaty(T®a) =1®aforallaec O(G). Then
automatically preserves the right coaction

idy ®A, : X8B(L*(G)) - X8B(L*(G))®.2>(G).
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Let X c B(*H) be an operator system and

¥ : XBB(LX(G)) - X@B(L2(G))

aucp map suchthaty(T®a) =1®aforallaec O(G). Then
automatically preserves the right coaction

idy ®A, : X8B(L*(G)) - X8B(L*(G))®.2>(G).

Proof.
Multiplicative domain argument. Ol
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conditional expectation, thus X », G is G-W*-injective.
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> Since R(X »q.7 G) = X x4, G (Ingredient 1).

24



PROOF MAIN RESULT

25



PROOF MAIN RESULT

X x4, G is G-C*-injective = X is G-injective.

25



PROOF MAIN RESULT

X x4, G is G-C*-injective = X is G-injective.
» Embed X c B(H).

25



PROOF MAIN RESULT

X x4, G is G-C*-injective = X is G-injective.

» Embed X c B(H).
> Choose a G-C*-ucp conditional expectation
P:R(X&B(L%(G)),id®A) - (X %4, G,id®A).

25



PROOF MAIN RESULT

X x4, G is G-C*-injective = X is G-injective.

» Embed X c B(H).

» Choose a G-C*-ucp conditional expectation
P:R(X®B(L*(G)),id®A) » (X 4, G,id®A).

» Use Arveson's extension theorem to choose an ucp
extension P : B(H)8B(L%(G)) — B(H)®B(L%(G)).

25



PROOF MAIN RESULT

X x4, G is G-C*-injective = X is G-injective.

Embed X c B(H).

Choose a G-C*-ucp conditional expectation
P:R(X®B(L*(G)),id®A) » (X 4, G,id®A).

» Use Arveson's extension theorem to choose an ucp
extension P : B(H)8B(L%(G)) — B(H)®B(L%(G)).

Since P acts identically on 1@ O(G), it preserves the action
id®A, (Ingredient 2).

v

v

v

25



PROOF MAIN RESULT

X x4, G is G-C*-injective = X is G-injective.

» Embed X c B(H).

» Choose a G-C*-ucp conditional expectation
P:R(X®B(L*(G)),id®A) » (X 4, G,id®A).

» Use Arveson's extension theorem to choose an ucp
extension P : B(H)8B(L%(G)) — B(H)®B(L%(G)).

» Since P acts identically on 1® O(G), it preserves the action
id®A, (Ingredient 2).

» Since P is G-C*-equivariant, it induces a G-equivariant map
Q: Fix(X8B(L%(G))) = X®L*(G) — Fix(X »ar G) = a(X).

25



PROOF MAIN RESULT

X x4, G is G-C*-injective = X is G-injective.

| 2
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Embed X c B(H).
Choose a G-C*-ucp conditional expectation
P:R(X®B(L*(G)),id®A) » (X 4, G,id®A).
Use Arveson's extension theorem to choose an ucp
extension P: B(H)®B(L%(G)) — B(H)®B(L%(G)).
Since P acts identically on 1@ O(G), it preserves the action
id®A, (Ingredient 2).
Since P is G-C*-equivariant, it induces a G-equivariant map
Q: Fix(X8B(L%(G))) = X®L*(G) — Fix(X »ar G) = a(X).
X is injective since there is a G-C*-conditional expectation
E: (X%, G,id8A) - (X, 7).

Ol
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G-C*-operator system and ¢ : X — Y is a G-C*-equivariant
uci map.

» The G-C*-extension (Y,:) is called G-C*-rigid if it has the
property that if ¢ : Y — Y is a ucp map with ¢ =+, then
é = idy.

» Itis called G-C*-injective extension of X if Y is G-C*-injective.

» A G-C*-injective extension of X is called G-C*-injective
envelope if the situation +(X) € X € Y with X a G-C*-injective
operator subsystem of Y implies that X = Y.

Similar definitions are made for G-operator systems.
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Existence and uniqueness

Let X be a G-C*-operator system. There exists a G-C*-injective
envelope (S,:) for X. If (S, ) is another G-C*-injective envelope,
there exists a unique G-C*-unital order isomorphism 6: S - S
such that § o . = 7. commutes. Moreover, (S,.: X — S) is a
G-C*-injective envelope if and only if (S, ) is G-C*-injective and
G-C*-rigid.
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Let X be a G-C*-operator system. There exists a G-C*-injective
envelope (S,:) for X. If (S, ) is another G-C*-injective envelope,
there exists a unique G-C*-unital order isomorphism 6: S - S
such that § o . = 7. commutes. Moreover, (S,.: X — S) is a
G-C*-injective envelope if and only if (S, ) is G-C*-injective and
G-C*-rigid.

» Notation: IS (X) is the G-C*-injective envelope of X.
» Asimilar true is for G-operator systems.

> Notation: Iz(X) is the G-injective envelope of X.
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Proof.

>

That G-C*-injective + G-C*-rigid = G-C*-injective
envelope is immediately checked.
Embed X ¢ B(#) and consider Y := R(B(H)®B(L*(G))),
which is a G-C*-injective operator system.
Consider the set G of G-C*-ucp maps ¢ : Y — Y that satisfy
¢oa=a.
Choose a minimal idempotent ¢ € G and check that ¢q(Y)
is a G-C*-injective envelope.

[]
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G-C*-Rigidity of reduced crossed products

Let (X,a), (Y, 3) be G-operator systems and ¢ : (X, a) - (Y, 8)
be an equivariant uci map. The following statements are
equivalent:
1 (Y,e: (X,a) = (Y, 8)) is a G-rigid extension of X.
2. (YourpG,e0,G: (X0 G ,id®A) - (Y %.5G,id®A))isa
G-C*-rigid extension of X x o G.

Equivariant injective envelopes and crossed products

Let X be a G-operator system. Let (Y, ) be a G-extension of X.
Then (Y, ) is the G-injective envelope of X if and only if
(Y %, G, %, G) is the G-C*-injective envelope of X x, G. In
particular,

(G(X) >4, = IG (X %, G)
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